• 제목/요약/키워드: linear SVM

Search Result 172, Processing Time 0.022 seconds

Orthonormal Polynomial based Optimal EEG Feature Extraction for Motor Imagery Brain-Computer Interface

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we explored the new method for extracting feature from the electroencephalography (EEG) signal based on linear regression technique with the orthonormal polynomial bases. At first, EEG signals from electrodes around motor cortex were selected and were filtered in both spatial and temporal filter using band pass filter for alpha and beta rhymic band which considered related to the synchronization and desynchonization of firing neurons population during motor imagery task. Signal from epoch length 1s were fitted into linear regression with Legendre polynomials bases and extract the linear regression weight as final features. We compared our feature to the state of art feature, power band feature in binary classification using support vector machine (SVM) with 5-fold cross validations for comparing the classification accuracy. The result showed that our proposed method improved the classification accuracy 5.44% in average of all subject over power band features in individual subject study and 84.5% of classification accuracy with forward feature selection improvement.

ACCELERATION OF MACHINE LEARNING ALGORITHMS BY TCHEBYCHEV ITERATION TECHNIQUE

  • LEVIN, MIKHAIL P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • Recently Machine Learning algorithms are widely used to process Big Data in various applications and a lot of these applications are executed in run time. Therefore the speed of Machine Learning algorithms is a critical issue in these applications. However the most of modern iteration Machine Learning algorithms use a successive iteration technique well-known in Numerical Linear Algebra. But this technique has a very low convergence, needs a lot of iterations to get solution of considering problems and therefore a lot of time for processing even on modern multi-core computers and clusters. Tchebychev iteration technique is well-known in Numerical Linear Algebra as an attractive candidate to decrease the number of iterations in Machine Learning iteration algorithms and also to decrease the running time of these algorithms those is very important especially in run time applications. In this paper we consider the usage of Tchebychev iterations for acceleration of well-known K-Means and SVM (Support Vector Machine) clustering algorithms in Machine Leaning. Some examples of usage of our approach on modern multi-core computers under Apache Spark framework will be considered and discussed.

Development of Solar Power Output Prediction Method using Big Data Processing Technic (태양광 발전량 예측을 위한 빅데이터 처리 방법 개발)

  • Jung, Jae Cheon;Song, Chi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.

Overmodulation Operation of SVM for NPC Type 3-Level Inverter (NPC형 3레벨 인버터의 공간벡터 과변조운전)

  • Lee, Jae-Moon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.22-32
    • /
    • 2008
  • This paper proposes a linearization technique for the 3-level NPC type inverter, which increases the linear control range of Inverter up to the one-pulse inverter. The overmodulation range is divided into two modes depending on the Modulation Index, MI. In overmodulation region I, the reference angles are derived from the fourier series expansion of the reference voltage corresponding to the MI. In overmodulation region II, the holding angles are also derived in the same way. Therefore, it is possible to obtain the linear control and the maximized utilization of PWM inverter output voltage.

UFKLDA: An unsupervised feature extraction algorithm for anomaly detection under cloud environment

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.684-695
    • /
    • 2019
  • In a cloud environment, performance degradation, or even downtime, of virtual machines (VMs) usually appears gradually along with anomalous states of VMs. To better characterize the state of a VM, all possible performance metrics are collected. For such high-dimensional datasets, this article proposes a feature extraction algorithm based on unsupervised fuzzy linear discriminant analysis with kernel (UFKLDA). By introducing the kernel method, UFKLDA can not only effectively deal with non-Gaussian datasets but also implement nonlinear feature extraction. Two sets of experiments were undertaken. In discriminability experiments, this article introduces quantitative criteria to measure discriminability among all classes of samples. The results show that UFKLDA improves discriminability compared with other popular feature extraction algorithms. In detection accuracy experiments, this article computes accuracy measures of an anomaly detection algorithm (i.e., C-SVM) on the original performance metrics and extracted features. The results show that anomaly detection with features extracted by UFKLDA improves the accuracy of detection in terms of sensitivity and specificity.

Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire (경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구)

  • Song, In;Lee, Geon-Mok;Hong, Kwon-Eui
    • Journal of Acupuncture Research
    • /
    • v.28 no.3
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.

Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection (기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적)

  • Jeong, Joon-Yong;Jung, Byung-Man;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.812-820
    • /
    • 2012
  • In this paper, multiple pedestrians tracking system using Histogram of Oriented Gradient and occlusion detection is proposed. The proposed system is applicable to Intelligent Surveillance System. First, we detect pedestrian in a image sequence using pedestrian's feature. To get pedestrian's feature, we make block-histogram using gradient's direction histogram based on HOG(Histogram of Oriented Gradient), after that a pedestrian region is classified by using Linear-SVM(Support Vector Machine) training. Next, moving objects are tracked by using position information of the classified pedestrians. And we create motion trajectory descriptor which is used for content based event retrieval. The experimental results show that the proposed method is more fast, accurate and effective than conventional methods.

An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms (데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델)

  • Sathishkumar, VE;Lee, Myeongbae;Lim, Jonghyun;Kim, Yubin;Shin, Changsun;Park, Jangwoo;Cho, Yongyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.153-160
    • /
    • 2020
  • Energy Consumption Predictions for Industries has a prominent role to play in the energy management and control system as dynamic and seasonal changes are occurring in energy demand and supply. This paper introduces and explores the steel industry's predictive models of energy consumption. The data used includes lagging and leading reactive power lagging and leading current variable, emission of carbon dioxide (tCO2) and load type. Four statistical models are trained and tested in the test set: (a) Linear Regression (LR), (b) Radial Kernel Support Vector Machine (SVM RBF), (c) Gradient Boosting Machine (GBM), and (d) Random Forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for calculating regression model predictive performance. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.