• Title/Summary/Keyword: lineaments

Search Result 92, Processing Time 0.022 seconds

Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System (가음단층계의 선형구조 추출과 선형구조와 단층활동의 관련성)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.

Lineament analysis in the euiseong area using automatic lineament extraction algorithm (자동 선구조 추출 알고리즘을 이용한 경북 의성지역의 선구조 분석)

  • 김상완
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.19-31
    • /
    • 1999
  • In this study, we have estimated lineaments in the Euiseong area, Kyungbuk Province, from Landsat TM by applying the algorithm developed by Kim and Won et al. which can effectively reduce the look direction bias associated with the Sun's azimuth angle. Fratures over the study area were also mapped in the field at 57 selected sites to compare them with the results from the satellite image. The trends of lineaments estimated from the Landsat TM images are characterized as $N50^{\circ}$~70W, NS~$N10^{\circ}$W, and $N10^{\circ}$~$60^{\circ}$E trends. The spatial distribution of lineaments is also studied using a circular grid, and the results show that the area can be divided into two domains : domain A in which NS~$N20^{\circ}$E direction is dominant, and domain B in which west-north-west direction is prominent. The trends of lineaments can also be classified into seven groups. Among them, only C, D and G trends are found to be dominant based upon Donnelly's nearest neighbor analysis and correlations of lineament desities. In the color composite image produced by overlaying the lineament density map of these C-, D-, and G-trends, G-trend is shown to be developed in the whole study area while the eastern part of the area is dominated by D-trend. C-trend develops extensively over the whole are except the southeastern part. The orientation of fractures measured at 35 points in the field shows major trends of NS~$N30^{\circ}$E, $N50^{\circ}$~$80^{\circ}$W, and N80$^{\circ}$E~EW, which agree relatively well with the lineaments estimated form the satellite image. The rose diagram analysis fo field data shows that WNW-ESE trending discontinuities are developed in the whole area while discontinuities of NS~$N20^{\circ}$E are develped only in the estern part, which also coincide with the result from the satellite image. The combined results of lineaments from the satellite image and fracture orientation of field data at 22 points including 18 minor faults in Sindong Group imply that the WNW-ESE trend is so prominent that Gumchun and Gaum faults are possibly extended up to the lower Sindong Group in the study area.

  • PDF

Geological Application of Lineaments from Satellite Images - A Case Study of Euiseong Sub-basin (위성 영상선구조의 지질학적 응용 - 의성소분지의 경우)

  • 김원균;김상완;원중선;민경덕;김정우
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.25-36
    • /
    • 2000
  • To evaluate the feasibility of using lineaments for the interpretation of regional geological structures, the extracted lineaments from satellite image and surveyed surface geological features mapped in the field were analyzed for the Euiseong Sub-basin. The lineaments extracted from Landsat-5 TM images show primary directions of N20$^{\circ}$~30$^{\circ}$E, N60$^{\circ}$~70$^{\circ}$E, N60$^{\circ}$~70$^{\circ}$W, which represent the trends of faults, strikes, and joints. In the sedimentary formation in the northern part of Palgongsan Uplift Zone, primary directions of the lineaments are NNE and NWW, and NEE in southern parts. The analysis of satellite lineaments is proved to be very useful to study the large-scale structures and surface geology of the Euiseong Sub-basin, whereas the previous research using brittle tectonics approach was advantaged in the outcrop scale in interpretation.

Spatial Integration of Multiple Data Sets regarding Geological Lineaments using Fuzzy Set Operation (퍼지집합연산을 통한 다중 지질학적 선구조 관련자료의 공간통합)

  • 이기원;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • Features of geological lineaments generally play an important role at the data interpretation concerned geological processes, mineral exploration or natural hazard risk estimation. However, there are intrinsically discordances between lineaments-related features extracted from surficial geological syrvey and those from satellite imagery;nevertheless, any data set contained those information should not be considred as less meaningful within their own task. For the purpose of effective utilization task of extracted lineaments, the mathematical scheme, based on fuzzy set theory, for practical integration of various types of rasterized data sets is studied. As a real application, the geological map named Homyeong sheet(1:50,000) and the Landset TM imageries covering same area were used, and then lineaments-related data sets such as lineaments on the geological map, lineaments extracted from a false-color image composite satellite, and major drainage pattern were utilized. For data fusion process, fuzzy membership functions of pixel values in each data set were experimentally assigned by percentile, and then fuzzy algebraic sum operator was tested. As a result, integrated lineaments by this well-known operator are regarded as newly-generated reasonable ones. Conclusively, it was thought that the implementation within available GISs, or the stand-alone module for general applications of this simple scheme can be utilized as an effective scheme can be utilized as an effective scheme for further studies for spatial integration task for providing decision-supporting information, or as a kind of spatial reasoning scheme.

Quantitative Analysis of the Look Direction Bias in SAR Image for Geological Lineament Study (지질학적 선구조 분석을 위한 SAR 영상에서의 방향편차에 대한 정량적 분석)

  • 홍창기;원중선;민경덕
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • SAR imagery usually reveals the influence of antenna look-direction on the delineation of geological structures. In this study, the look-direction bias in SAR image is quantitatively analyzed specifically for geological lineament study. Geologic lineaments are estimated using both Landsat TM and JERS-1 SAR images over the study area to quantitatively compare and analyze the look-direction bias in the SAR image. The standard geologic lineaments in the study area are established from lineaments estimated from TM images, field mapping, and fault lines in a published geologic map. The results show that lineaments normal to radar look-direction are extremely well enhanced while those parallel to look-direction are less visible as expected. However, certain lineaments even parallel to radar look-direction can still be detectable in a favorable topographic condition. Compared with TM image, the total number of detected lineaments in each direction in the SAR image increases or decreases ranging from 33% to 159% in length and from 28% to 187% in occurrence. The ratio of lineaments in SAR image to those in TM image with respect to direction can be fitted by a cosine function. The fitted function indicates that geological lineament is more easily detected in SAR image than in TM image within about $\pm$50$^{\circ}$ normal to radar look-direction. And lineaments with limited extension appear to be more sensitive to the look direction bias effect.

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.

Geologica Structure of the Euiseong Sub-basin by Anlaytic Aeromagentic Anomaly Data (항공자력의 Analytical 이상을 이용한 의송소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.229-237
    • /
    • 2000
  • The structure of Euiseong Sub-basin and boundary of sub-basins were examined by analytical aeromagentci anomaly data. Magnetic lineaments have trends of NE-SW, NWW-SEE and NEE-SWW. The NE-SW lineaments in the sedimentary formations and pre-Cretaceous basement are assoicated with the direction of expansion of basin and the lineaments in the volcanic rocks and intrusives indicate the direction of structural weakness ones such as fault, which were major gateways of igneous activities. Euiseong Subbasin is bounded by pre-existing Andong Fault, pre-Cretaceous basement in the west, NE-SW lineament from Jyungsan to Angang, and NW-SE lineament connecting southwestern boundary of Palgongsan Granite and Jeokje Fault. In particular , the NW-SE lineament , which caused upheavel of pre-Cretaceous rocks, on Jeokje Fault is inferred as a boundary between Euiseong and Milyang Sub-basins.

  • PDF

Comparison between the Yangsan and Ulsan fault systems based on the lineament Features (선형구조 분석을 통한 양산 단층계와 울산 단층계의 비교)

  • 최원학;장천중;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.30-37
    • /
    • 2003
  • Lineaments along the Yangsan and Ulsan fault systems were extracted through aerial photograph interpretation in the southeastern part of Korean Peninsula. Lineaments can be classified into five ranks on the basis of certainty and divided by curvatures. Mean strikes of all lineament by aerial photograph interpretation is dominant in NS ~N05$^{\circ}$E direction along the Ulsan fault system and Nl5-20$^{\circ}$E direction along the Yangsan fault system respectively. The curvature of lineament around Yangsan Fault is different from around the Ulsan Fault system, the former shows that straight lineament is dominant but the latter curved lineaments are dominant. It indicates that the Quaternary faults around Ulsan Fault would be appeared as reverse fault.

  • PDF

프랙탈 차원을 이용한 암괴 규모에 대한 예비연구

  • Park Gyeong-U;Kim Gyeong-Su;Kim Cheon-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.385-388
    • /
    • 2005
  • Through the regional lineament analysis in Korea peninsula, the statistical distribution of regional lineament is investigated. We also analyze the lineaments pattern using the fractal dimension. These results are the preliminary study for a understanding of the deep ground geological structure in Korea. For the investigations of the average block scale, we use the Dershowitz and Herda(1992)'s method. At result, the average spacing between the regional lineaments is about 10km.

  • PDF

Orientations of Tecto-lineaments and Discontinuities for Different Rock Types in Andong Area (안동지역의 암종별 선구조선과 불연속면의 방위특성)

  • Kim Gyo-Won;Ihm Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.23-30
    • /
    • 2006
  • This study was carried out to understand the relationship between orientation of tecto-lineaments obtained from aero-photograph and orientation of discontinuities measured at field for the rock types of igneous, sedimentary and metamorphic rocks in Andong area. Total 847 tecto-lineaments were extracted from the aero-photographs and total 1,940 discontinuities including joints, foliations and faults were measured during geologic survey. By using the software DIPS, preferred trends of tecto-lineaments were deduced as N30E-N40E for igneous rocks and N50E-N60E for both sedimentary and metamorphic rocks, while the trends of discontinuities were found as N40E-N50E for igneous rocks, N50E-N80E for sedimentary rocks and N50E-N60E for meta morphic rocks. Even though both orientations for a given rock type showed relatively good agreement in its trend, some discrepancy is also appeared. Since construction safety of geo-structures such as tunnel and slope, etc., is significantly affected by the orientation of discontinuities in rock masses, it is highly recommended to perform a detailed geologic survey as well as an aero-photograph interpretation at a design stage.