• Title/Summary/Keyword: line position measurement

Search Result 182, Processing Time 0.032 seconds

Development of Guide Line Position Measurement System using a Camera for RTGC Tracking Control (RTGC 주행제어를 위한 카메라기반 가이드라인 위치계측시스템 개발)

  • Jeong, Ji-Hyun;Kawai, Hideki;Kim, Young-Bok;Jang, Ji-Sung;Bae, Heon-Meen
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane). This paper introduces a new guide line position measurement method using a camera for the RTGC which plays a important role in the harbor area. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as trajectory to follow is obtained, the position of RTGC is calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guideline. This system consists of a camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the camera, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, high accurate standard deviations were found as 0.98 pixel of the displacement and 0.24 degree of the angle, including robustness against lighting fluctuation and cracks of the guide line also.

Development of a Camera-based Position Measurement System for the RTGC with Environment Conditions (실외 주행환경을 고려한 카메라 기반의 RTGC 위치계측시스템 개발)

  • Kawai, Hideki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.892-896
    • /
    • 2011
  • This paper describes a camera-based position measurement system for automatic tracking control of a rubber Tired Gantry Crane (RTGC). An automatic tracking control of RTGC depends on the ability to measure its displacement and angle from a guide line that the RTGC has to follow. The measurement system proposed in this paper is composed of a camera and a PC that are mounted on the right upper between front and rear tires of the RTGC's side. The measurement accuracy of the system is affected by disturbances such as cracks and stains of the guide line, shadows, and halation from the light fluctuation. To overcome the disturbances, both side edges of the guide line are detected as two straight lines from an input image taken by the camera, and parameters of the straight lines are determined by using Hough transform. The displacement and angle of the RTGC from the guide line can be obtained from these parameters with the robustness against the disturbances. From the experiments with the disturbances, we found the accurate displacement and the angle from the guide line that have the standard deviations of 0.95 pixels and 0.22 degrees, respectively.

A Study on the Development of Guide Line Measurement System in the Driving Condition (주행상태에서의 가이드라인 계측 시스템 개발에 관한 연구)

  • Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane) and RMGC(Rail Mounted Gantry Crane). This paper introduces a guide line measurement system on the operating condition, in which two camera are installed to detect the guide line. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as the trajectory to follow is obtained, the position of RTGC is automatically calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guide line. This system consists of two camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the cameras in the moving state, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, the accuracy and usefulness of the proposed system is evaluated by comparing other instruments.

An on-line measurement of robot tracking error via an optical PSD sensor (PSD센서를 사용한 로보트 추적 오차의 실시간 측정에 관한 연구)

  • 김완수;박용길;조형석;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.433-437
    • /
    • 1988
  • Direct measurement of the relative position between the end effector of robot and moving objects reduces difficulties caused by the joint encoder reading and transformation. For those purpose, the on-line sensing method using PSD sensor was developed in this paper. The sensor was calibrated on the precision table. Then, the relative position of a moving objects on the conveyor was measured while the robot was tracking the one.

  • PDF

Development of Position Detection System using GPS (GPS를 이용한 위치검지시스템 개발)

  • Han, Young-Jae;Mok, Jin-Yong;Kim, Ki-Hwan;Kim, Seog-Won;Eun, Jong-Phil
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1729-1734
    • /
    • 2007
  • Recently, as the feasibility study shows that trans-Korea railway and trans-continental railway are advantageous, interest in high-speed railway system is increasing. Because railway vehicle is environment-friendly and safe compared with airplane and ship, its market-sharing increases gradually. We developed a measurement system for on-line test and evaluation of performances of KHST. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. Nowadays, position data inputs to pulse signal from wheel. Perfect position measurement was limited to slip and slide of vehicle. This measurement makes up for the weak points, Position Detection System using GPS develops. By using the system, Korean High Speed Train is capable of accurate fault position detection.

  • PDF

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

A Study on Weld Bead Profile Measurement System for Use in Automatic Weld Bead Removal System

  • Lee, Jeong-Woo;Lee, Eun-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.194-197
    • /
    • 1999
  • Automatic weld bead removal system is consisted of bead removal tool, bead profile measurement system and tool motion control system. In this paper, design of weld bead profile measurement system which is used for automatic weld bead removal system is described. The system measures the weld bead position, normal vector of the auto-body and weld bead profile. The optical sensor with structured laser beam is used as a sensor and comparison of the sensor that can be used for this purpose is discussed in detail. The measurement process and the related software developed for this purpose are also described. A median filter, average filter and long line filters are used and their effects in bead profile measurement are discussed. The measurement system is integrated into automatic bead removal system and is used to remove weld bead in rear pillar of automotive body. The whole system operates well in automotive body assembly line and thus the system is proved to be good for this purpose.

  • PDF

Precision control of a mobile/task robot using visual information (비젼 정보를 이용한 이동/작업용 로봇의 정밀제어)

  • 한만용;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.71-79
    • /
    • 1997
  • This paper introduces a methodology of the precise control of a mobile/task robot using visual information captured bythe camera attached at the hand of the task robot. The major problem residing in the precise control of mobile/task robot is providing an accurate and stable base for the task robot through the precise control of mobile robot. On account of uncertainties on the surface, the precise control of mobile robot is not feasible without using external position sensor. In this paper, the methodology for the precise control of mobile robot is proposed, which recognizes the position of mobile robot using the camera attached at the hand of the task robot. While the task robot is approaching to an assembly part, the position of mobile robot is measured using the line correspondence between the image capturesd by the camera and the real assembly part, and using the kinematic transformation from the hand of the task robot to the mobile robot. To verify the solidness of this method, experimental data for the measurement of camera position/orientation and for the precise control of mobile robot using measurement are shown.

  • PDF

Development of a Stereo Vision Sensor-based Volume Measurement and Cutting Location Estimation Algorithm for Portion Cutting (포션커팅을 위한 스테레오 비전 센서 기반 부피 측정 및 절단 위치 추정 알고리즘 개발)

  • Ho Jin Kim;Seung Hyun Jeong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.5
    • /
    • pp.219-225
    • /
    • 2024
  • In this study, an algorithm was developed to measure the volume of meat products passing through the conveyor line of a portion cutter using a stereo vision sensor and calculate the cutting position to cut them into the same weight unit. Previously, three or more laser profile sensors were used for this purpose. However, in this study, the volume was measured using four stereo vision sensors, and the accuracy of the developed algorithm was verified to confirm the applicability of the technique. The technique consists of stereo correction, scanning and outlier removal, and cutting position calculation procedures. The comparison between the volume measured using the developed algorithm and the results measured using an accurate 3D scanner confirmed an accuracy of 91%. Additionally, in the case of 50g target weight, where the cutting position calculation is crucial, the cutting position was calculated at a speed of about 2.98 seconds, further confirming the applicability of the developed technique.

Project Performance Evaluation and Workload Monitoring Technique by Using Input/Output Bipolar Diagram

  • Lee, Jung-Gyu;Jeong, Seung-Ryul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.79-87
    • /
    • 2017
  • Company A, an embedded system manufacturer, provides its products to Company P which is the parent company of Company A. Both companies learned that they needed to find over 4,000 bugs before market release in order to meet the acceptable quality level. Traditionally, they had utilized time-series line graphs as their common performance measurement tool. These graphs compared accumulated numbers of bugs fixed with accumulated numbers of bugs found. Engineers in Company A had been under pressure to improve the process capacity because the line for bugs fixed was always below than the line for bugs found. By using a newly designed Bipolar diagram, engineers in Company A analyzed the process performance. And they were in a position to be more flexible for internal or inter-companies meeting. Authors explain an empirical study of a graphical and practical performance measurement tools relating to mainly the Bipolar diagram. As a result, the Bipolar diagram provides workload monitoring and performance measurement functions in a given timeframe by using the concepts of Optimum Process Line (or band) and Fair Process Capacity Zone.