• Title/Summary/Keyword: line impedance

Search Result 936, Processing Time 0.029 seconds

A study of impedance relay operation and voltage instability caused by over load of neighborhood line at contingency of heavy load line (증조류 선로 고장시 인접선로 과부하에 의한 거리계전기 동작 및 전압불안정 현상 연구)

  • Yun, Ki-Seob;Lee, Hyoung-Han;Kim, Chang-Gon;Ahn, Bo-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.359-361
    • /
    • 2005
  • This paper presents the method of countermeasures before voltage collapse by load encroachment(impedance of load ability on R-X locus decrease toward zero point) and describes a study of impedance relay(zone-3) operation and voltage instability caused by over load of neighborhood line at contingency of heavy load line.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

A LOSSY LINE DISTRIBUTED PARAMETERS CALCULATION USING DATA OF OPEN-SHORT IMPEDANCE MEASURING METHOD (Open-Short 방식의 임피던스 측정에 의한 분포정수의 보정)

  • ANANIEV, Igor P.;Joe, Ki-Yeon;Byun, Young-Bok;Seo, Jeong-Il;Kim, Eun-Soo;Kim, Tae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2553-2555
    • /
    • 1999
  • The paper contains design formulas and an execution algorithm for calculation of distributed parameters as well as wave and impedance parameters of a uniform transmission line using data of the line input impedance measurements by the OPEN-SHORT method. In difference from published before works on the OPEN-SHORT method application for line parameters determination, in which the lines with small losses are considered /1-3/, the obtained formulas allow to calculate parameters of transmission lines with arbitrary losses. It opens new possibilities of the OPEN-SHORT method utilization for development and application of the probe - type lossy dielectric media parameters meters based on transmission lines, including probe-type moisture material meters.

  • PDF

Analysis of Symmetric Coupled Line with New Crossbar Embedded on Si-based Lossy Structure using the FDTD Method (실리콘에 기초한 새로운 크로스바 구조의 손실있는 대칭 결합선로에 대한 유한차분법을 이용한 해석)

  • Kim, Yoonsuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.122-129
    • /
    • 2001
  • A characterization procedure for analyzing symmetric coupled MIS(Metal-Insulator-Semiconductor) transmission line is used the same procedure as a general single layer symmetric coupled line with perfect dielectric substrate from the extraction of the characteristic impedance and propagation constant for even- and odd-mode. In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite- Difference Time-Domain(FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Symmetric coupled MIS transmission line parameters for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency- dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

  • PDF

A Study on Performance Enhancement of Distance Relaying by DC Offset Elimination Filter (직류옵셋제거필터에 의한 거리계전기법의 성능 개선에 관한 연구)

  • Lee, Kyung-Min;Park, Yu-Yeong;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • Distance relay is widely used for the protection of long transmission line. Most of distance relay used to calculate line impedance by measuring voltage and current using DFT. So if there is a computation error due to the influence of phasor by DC offset component, due to excessive vibration by measuring line impedance, overreach or underreach can be occurs, and then abnormal and non-operation of distance relay can be issue. It is very important to implement the robust distance relaying that is not affected by DC offset component. This paper describes an enhanced distance relaying based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any prior information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced distance relay uses fault current as well as residual current. The behavior of the proposed distance relaying using off-line simulation has been verified using data about several fault conditions generated by the ATP simulation software.

Droop Control to Compensate Load Voltage Unbalance for Inverter-based Distributed Generations with Unequal Impedance Lines (불균등 임피던스 선로를 갖는 인버터기반 분산전원의 부하전압 불평형을 보상하는 드룹 제어)

  • Yang, Won-Mo;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper proposes a droop control scheme to compensate the unbalanced line-to-line voltage of unbalanced 3-phase load which is coupled with two inverter-based distributed generations through unequal impedance lines. Unbalanced line-to-line load voltages occur due to using single-phase loads, which brings about bad effects on the coupled inverters and the distributed generations. In order to compensate the unbalanced line-to-line voltages, a positive sequence voltage control was used for sharing the active and reactive power and a negative sequence control was used for reducing the negative sequence voltage. The feasibility of the proposed scheme was first verified by computer simulations, and then experiments with a hardware set-up built in the lab. The experimental results were compared with the simulation results to confirm the feasibility of the proposed scheme.

Improved Impedance Matching of Dual-Frequency Microstrip Printed-Dipole Antenna with Conductor Back

  • Tangjitjesada, M.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1668-1671
    • /
    • 2003
  • A novel dual-frequency microstrip printed-dipole antenna operating at 5 GHz and 10 GHz is presented. This antenna is designed for wireless and mobile communication. The balance step coplanar strip is used to be a transmission line at the center of dipole with matching impedance at 50 ohm. Using the conductor strip align on the other side of antenna and adjust the width of step coplanar strip line to improved input impedance matching. By modification for matching impedance of dual frequency antenna are not affected to the radiation patterns. The Finite Difference Time Domain (FDTD) technique is applying to analyze the basic characteristic properties such as $S_{11}$ , input impedance , VSWR and radiation patterns. And these parameters are discussed. The analyze problem space are $51{\times}197{\times}175$ cells and cell dimension are ${\Delta}x=0.3\;mm$ and ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF

Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance (자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘)

  • Kwon, Young-Jin;Kim, Su-Hwan;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

Novel Impedance Method for Analyzing Truncal Obesity (중심성 비만 분석을 위한 새로운 임피던스 해석법)

  • Lim, Taek-Gyun;Seo, Kwang-Seok;Jeong, In-Cheol;Jun, Suk-Hwan;Noh, Yeon-Sik;Kim, Eung-Seok;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.849-856
    • /
    • 2009
  • Truncal obesity associated with insulin resistance and metabolic syndrome increase the likelihood of hypertension, various cardiovascular diseases, hyperlipidemia and coronary heart diseases. International Diabetes Federation (IDF) experts recognized that it is necessary to develop the simple diagnostic tool which is applicable to diagnose truncal obesity worldwide, and proposed the method using a waist circumference but there is a limit to estimate subcutaneous fat distribution. However, waist line is also influenced by total fat capacity less than the intra abdominal fat. The more having severe obesity, the more correlation coefficient between waist line and intra abdominal fat is low. Therefore, this thesis defines a new abdominal impedance measurement position and impedance-index to analysis central obesity. This proposes the new model to estimate abdominal obesity using the abdominal impedance-index and CT images acquired fro 160 Korean subjects. The proposed model shows that the abdominal fat distribution has a higher correlation than waist line. (Adj R2=0.809, 0.667 and 0.687 with abdominal fat area, visceral fat area and subcutaneous fat area respectively).

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.