• Title/Summary/Keyword: line geometry

Search Result 451, Processing Time 0.026 seconds

Derivation of Surface Temperature from KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.343-353
    • /
    • 2022
  • An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments - the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) - continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 ㎛ for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3Asensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water,sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 ㎛) and longwave (5-50 ㎛) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.

Coastal Protection with the Submerged Artificial Bio-reefs (인공 Bio-reef에 의한 해변침식방지)

  • Lee Hun;Lee Joong-Woo;Lee Hak-Sung;Kim Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.159-166
    • /
    • 2004
  • The beach, a margin between the sea and the land, is an extremely dynamic zone, for it is here that the motion of the sea interacts with the sediment, rock of the land or the artificial barriers. In order to prohibit or retard erosions due to the extreme Typhoon or storm induced waves, man has constructed these of temporary or more permanent nature, but they caused problems of other erosions from the secondary effect of them and a bad influence on the seascape. In considering the energy available to accelerate sediment transport and erosion in the surf zone, where the waves are broken, and offshore beyond the breaker line, the wave height and the wave period should be taken account. Hence, we tried to present an applicability of the submerged artificial Bio-reefs analyzing waves by a numerical model such that they could reduce the wave power without the secondary effect and restoration of marine ecologies. A new technique of beach preservation is by artificial reefs with artificial and/or natural kelps or sea plants. By engineering the geometry of the nearshore reef, the wave attenuation ability of the feature can be optimized Higher, wider and longer reefs provide the greatest barrier against wave energy but material volumes, navigation hazards, placement methods and other factors require engineering considerations for the overall design of the nearshore reefs.

  • PDF

Analytical Approach for the Noise Properties and Geometric Scheme of Industrial CR Images according to Radiation Intensity (산업용 CR영상의 방사선 강도에 따른 잡음특성과 기하학적 구도형성의 해석적 접근)

  • Hwang, Jung-Won;Hwang, Jae-Ho;Park, Sang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • In this paper we investigate an analytical approach for noise properties and geometric structure in Computed Radiography(CR) images of industrial steel-tubes. Over thirty diverse radiographic images are sampled from industrial radiography measurements according to radiation intensity. Each image consists of three regions; background, thickness and inner-tube. Among these the region of inner-tube is selected for the object of analysis. Geometric structure which includes the noise generation is analyzed by the statistical and functional methodology. The analysis is carried on spacially and line by line. It verifies the geometrical transfigure from the circle configuration of steel-tube and noise variation. The estimation of fitting function and its error are the geometric factors. The statistics such as standard deviation, mean and signal-to-noise ratio are noise parameters for discrimination. These factors are considered under the intensity variation which is the penetrative strength of radiation. The analysing results show that the original geometry of circle is preserved in the form of elliptic or short/long diameter circle, and the noise deviation has increased inverse proportional to the radiation intensity.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Micelle Formation of Surfactant Solution(3) -Self-Diffusion and 1H Relaxation for Mixed Micelle of Nonionic and Ionic Surfactants- (계면활성제 수용액에서 미셀형성(제3보) -비이온성과 이온성계면활성제의 혼합 미셀에 있어 자기확산 및 프로톤 이완-)

  • Choi, Seung-Ok;Kwack, Kwang-Soo;Park, Heung-Jo;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.876-880
    • /
    • 1999
  • The surfactant self-diffusion coefficients of mixed micellar solutions of ionic and nonionic surfactants have been measured by the NMR pulsed field gradient spin echo(FT-PGSE) method. In addition, the line widths of $^1H$ NMR signal have been monitored. The system investgated are $C_{12}EO_5/SDS/D_2O$, $C_{12}EO_5/DTAC/D_2O$, and $C_{12}EO_8/SDS/D_2O$. In the sample series, the molar ratios of $D_2O$ to surfactant(ionic+nonionic) were kept constant while the surfactant mixing ratio was varied. For the $C_{12}EO_5$ system, the surfactant self-diffusion coefficient indicates minimum when the surfactant mixing ratio is about 20% ionic surfactant. The observed decrease in self-diffusion coefficients as nonionic surfactant was replaced by ionic surfactant is interpreted to mainly be due to an increased micelle-micelle repulsion. The increase in self-diffusion coefficients occurring at higher fraction of ionic surfactant is shown to be due to a decrease in micelle size. For the $C_{12}EO_8$ system, the effect of the surfactant mixing ratio is much weaker which can be understood by considering the molecular geometry and large headgroup area. The proton NMR line widths correlate well with the self-diffusion coefficients and broadening of the alkyl chain methylene signals is found when the self-diffusion coefficients is low.

  • PDF

A Euclidean Reconstruction of 3D Face Data Using a One-Shot Absolutely Coded Pattern (단일 투사 절대 코드 패턴을 이용한 3차원 얼굴 데이터의 유클리디안 복원)

  • Kim, Byoung-Woo;Yu, Sun-Jin;Lee, Sang-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.133-140
    • /
    • 2005
  • This paper presents a rapid face shape acquisition system. The system is composed of two cameras and one projector. The technique works by projecting a pattern on the object and capturing two images with two cameras. We use a 'one shot' system which provides 3D data acquired by single image per camera. The system is good for rapid data acquisition as our purpose. We use the 'absolutely coded pattern' using the hue and saturation of pattern lines. In this 'absolutely coded pattern' all patterns have absolute identification numbers. We solve the correspondence problem between the two images by using epipolar geometry and absolute identification numbers. In comparison to the 'relatively coded pattern' which uses relative identification numbers, the 'absolutely coded pattern' helps obtain rapid 3D data by one to one point matching on an epipolar line. Because we use two cameras, we obtain two images which have similar hue and saturation. This enables us to have the same absolute identification numbers in both images, and we can use the absolutely coded pattern for solving the correspondence problem. The proposed technique is applied to face data and the total time for shape acquisition is estimated.

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

Characteristics of Wind Speed and PM10 Concentration underneath Railway Trains (도시철도 차량 하부의 풍속 및 미세먼지 농도 특징)

  • Kim, Jong Bum;Woo, Sang Hee;Jang, Hong-Ryang;Chou, Jin-Won;Hwang, Moon Se;Park, Hyung-Koo;Yoon, Hwa Hyeon;Jung, Joon-Sig;Bae, Gwi-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • Since operation of railway trains is a major source of particle pollution in tunnel air, a particle removal device can be an effective measure to remove wear particles. To obtain design conditions of the particle removal device that will be installed underneath the railway trains, the wind speed and particle concentration underneath the trains were investigated using a three-dimensional ultrasonic anemometer and a DustTrak aerosol monitor, respectively. The measurements were made for the trains running on Seoul Metropolitan Subway Line 5 on February 10, 2015. The data were analyzed according to the track geometry (straight, curved) and train speed pattern (acceleration, cruising, and deceleration) between stations. Train speed was also analyzed. The average wind speed and $PM_{10}$ concentration underneath the trains were ~30% of the train speed and ${\sim}200{\mu}g/m^3$ for both straight and curved sections. Average $PM_{10}$ concentration for deceleration sections was higher than that for acceleration sections.

Optimized Mix Proportioning of Steel and Hybrid Reinforced Concrete Using Harmony Search Algorithm (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.151-159
    • /
    • 2006
  • The guide line of the SFRC mix design was not established, and the convenience of the practical application on the spot is not so good. In this paper, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply to SFRC on the practical spot. This program could minimize the number of trial mixes and get an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. Additionally, new algorithm, in this paper, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players, Musical performances seek a best state determined by aesthetic estimation, as the optimization algorithms seek a best state determined by objected function value. And, it was developed the program about single fiber reinforced concrete, beside to the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next research about hybrid fiber reinforced concrete.