• Title/Summary/Keyword: line die forming

Search Result 42, Processing Time 0.026 seconds

Study on the Forming of Tailor Welded T-Section (레이저 용접 판재의 T형 단면에의 적용 및 성형성 연구)

  • 김헌영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • Wrinkles and shape distortions are generated during the forming of B-pillar(or center pillar) which is a component of the automobile side-frame. The stretch flanging modes at the joining part of the B-pillar and the roof-rail or the side-still give rise to forming problems when taior-welded blanks are applied to the side-frames. The authors simplified B-pillar lower part to T shaped section to investigate the forming behaviors. Three of die step locations and two of blank types were tested to show the effects of weld line locations and edge conditions on he forming of tailor welded blanks. The heights of body wrinkles and the strain distribution in the stretch flanged area were measured and compared.

  • PDF

Consideration of thickness change during progressive drawing process of automotive coupler parts(AL5052-H32) (자동차 커플러 부품(Al5052-H32)의 프로그래시브 드로잉 공정 시 두께 변화 고찰)

  • Park, Sang-Byung;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2020
  • Progressive drawing processing is one of the manufacturing processes used to mass-produce a variety of products on the industrial site. In this study, the goal is to achieve a uniform product thickness of at least 1.3mm by reducing the wall thickness of the coupler parts used in automotive air conditioning systems to within 15% using A5052-H32 materials. The progressive die was designed using Blank's law of volume invariance. Due to the characteristics of the drawing process, the material thickness in the punch R part decreases and the thickness in the die R part increases. When designing the progressive die of the coupler part, an ironing method, a push back method, and a stand-alone die pad method were applied to each process to design a mold in consideration of the drawing rate and to artificially adjust the thickness change. The suitability of the method used in die design was investigated by measuring the thickness change of forming parts for each process. In the final part, it was confirmed that the thickness measurement values of the five regions of a radial line were implemented as 1.34-1.36 mm.

A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming (반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구)

  • 윤재민;김영호;박준홍;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF

A Study of auto-body panel correction of forming analysis that use One-step Forming method (One-step Forming 방법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.89-97
    • /
    • 2005
  • Thin plate correction of forming process that it is nowadays smile change of simple contact surface as it becomes possible that forecast dictionary numerically exactly to analyze comparative big comp displacement real industry spot problems between complicated and abnormal curved line shapes and thin plate and die more reliable and need many efforts yet economical analysis method is required and develops this efficient algorithm. This research analyzes correction of forming and examined possibility and validity of spot application using One-Step Finite Element Method. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

Applications to the Numerical Stamping Analysis of Tailor-welded Blanks (테일러드 블랭크의 스탬핑 성형해석에 관한 연구)

  • 이종민;최이천;최치수;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.110-120
    • /
    • 1998
  • Tailor-welded blanks are made of two or more different blanks in thickness or material. So car body with tailor-welded blanks need not reinforcement panels. However in order to make stamping tools for tailor-welded blanks, die engineers should know about the exact position of the welding line after the part is drawn. The necessity of knowledge about the position of welding line needs forming simulation methodology as a prior step in tooling. Therefor some parts of the simulation methodology are proposed and compared with the experimental results.

Study on Application of Flexible Forming Technology for Curved Plate Forming using Thick Plate (후판의 곡면 가공을 위한 가변성형기술 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Lee, H.M.;Ku, T.W.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.122-125
    • /
    • 2008
  • Generally, in shipbuilding, large curved block components which have large curvature radius along various directions are used for huge ships such as LPG-vessel and oil tanker ships. Lots of the blocks are manufactured by line heating method which uses a heat source to bend the thick plate materials. The conventional forming process is entirely dependent on the experience of experts because it is done by manual method thus the curvatures and qualities are not uniform even for same part. However, it is hard to adopt the press forming process using die tool sets fur the manufacturing because of the characteristics of the industry that based on the small quantity and variety in the products. In this study, flexible forming technology using numbers of punches is investigated based on the simulation to substitute for the conventional forming method. Thick plate material model was applied to the proposed process to verify the feasibility for hull structure block forming process. The press forming processes were simulated by adopting the explicit-to-implicit sequential solution. Moreover, experiment of the flexible forming process was also conducted and its results were compared with that of simulation.

  • PDF

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

Development of a Flexibly-reconfigurable Roll Forming Apparatus for Curved Surface Forming (곡면성형을 위한 비정형롤판재성형 장비 개발)

  • Yoon, J.S.;Park, J.W.;Son, S.E.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.161-168
    • /
    • 2016
  • Sheet metals are often required to be formed into three dimensional curved shapes for use as skin structures. As a result various sheet metal forming methods, such as press die forming, stretch forming, and line heating have been used over the years in industrial production lines. Although they are extensively used in industry, these methods are not suitable for small quantity batch productions. Studies have been conducted to improve or replace these methods with plausible flexible forming technologies. As a part of these studies, we developed a new and more efficient forming device named flexibly-reconfigurable roll forming (FRRF). The current study presents the process development and experimental verification for the applicability of this device. To improve the efficiency of the FRRF apparatus, several hardware components were invented and a suitable operating program was developed using MFC of visual C++. The ways to make the FRRF apparatus fully functional are also described. Sheet metal was formed into three dimensional shapes using the FRRF apparatus and the final products are presented as evidence for the applicability of the developed device.

The Study of Manufacturing Technology for a Sill Side by Roll Forming (다단 성형 기술을 이용한 차체 부품 개발)

  • Kim, D.K.;Han, S.W.;Jeon, H.J.;Cheon, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.