• Title/Summary/Keyword: line capacity simulation

Search Result 164, Processing Time 0.029 seconds

Spreadsheet Model Approach for Buffer-Sharing Line Production Systems with General Processing Times (일반 공정시간을 갖는 버퍼 공유 라인 생산시스템의 스프레드시트 모형 분석)

  • Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Although line production systems with finite buffers have been studied over several decades, except for some special cases there are no explicit expressions for system performances such as waiting times(or response time) and blocking probability. Recently, a max-plus algebraic approach for buffer-sharing systems with constant processing times was introduced and it can lead to analytic expressions for (higher) moment and tail probability of stationary waiting. Theoretically this approach can be applied to general processing times, but it cannot give a proper way for computing performance measures. To this end, in this study we developed simulation models using @RISK software and the expressions derived from max-plus algebra, and computed and compared blocking probability, waiting time (or response time) with respect to two blocking policies: communication(BBS: Blocking Before Service) and production(BAS: Blocking After Service). Moreover, an optimization problem which determines the minimum shared-buffer capacity satisfying a predetermined QoS(quality of service) is also considered.

The Simulation of High-Speed Forwarding IP Packet with ATM Switch (ATM 스위치를 이용한 IP 패킷 고속 전송 시뮬레이션)

  • Heo, Kang-Woo;Lee, Myung-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2764-2771
    • /
    • 1999
  • ATM has recently received much attention because of its high capacity, its bandwidth scalability, and its ability to support multiservice traffic. However, ATM is connection oriented whereas the vast majority of modern data networking protocols are connectionless. The alternative to support current service on ATM will be a router with attached switching hardware that has the ability to cache routing decisions. In this paper, we described the router using a switch and simulated the performance. From the results of the simulation, the routing delay was decreased as the number of flow channels. Cell-delay was shortest at 30,000 cell-time when the keeping time of a flow channel was. The line utilization was rapidly decrease when a flow-setup time is 20 30 cell-time. The results of this simulation could be applied to predict the performance of the router using ATM switch.

  • PDF

An Investigation on Correction of Overcurrent Protective Relaying Set Value for Bus Interconnected with Distributed Generations (분산전원의 계통 연계에 따른 모선 보호용 과전류 계전기 설정치 정정에 대한 고찰)

  • Jang, Sung-Il;Kim, Ji-Won;Park, In-Ki;Kwon, Hyouk-Jun;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.137-140
    • /
    • 2002
  • This paper describes the effect of distributed generations (DG) on the bus protection scheme. When the generating capacity of DG is larger than 3 MVA totally, DG are generally connected to the 22.9 kV bus directly with the dedicated line. Due to the fault current contribution of DG, the overcurrent protective relay that have conventional set value cannot detect the fault occurred in distribution power network with DG. Therefore. the impacts from interconnection of DG on the overcurrent protective relay for bus protection should be accurately assessed and mitigated. Simulation results show that it would be necessary to modify the overcurrent protective relay set value for protecting the bus according to the generating capacity of DG.

  • PDF

PWM Converter with Unity Power Factor for UPS systems (고역률 PWM CONVERTER를 적용한 UPS)

  • Lee, Woo-Cheol;Suh, In-Young;Lee, Bum-Hee;Seo, Dong-Hwi;Kueon, Seong-Gon;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.753-755
    • /
    • 1993
  • Full Bridge Diode Rectification and Phase Controlled SCR Rectification are the most widely used methods of power conversion($AC{\rightarrow}DC$) in Power Electronic products such as UPS systems. But using these types of converters can lead to the following problems. First, they generate harmonics on the AC input side, which can cause interference in other equipment connected to the same commercial power line. Second, they deteriorate the power factor so that the input power capacity or the equipment becomes larger than the actual rated output capacity. As a means to overcome these problems an IGBT type PWM Converter, which applies a current control algorithm, is proposed. In this paper the enhancement of the converter performance is shown through simulation.

  • PDF

Circulating Current Control in MMC-HVDC Considering Switching Device Current Capacity under Unbalanced Voltage Conditions (전압 불평형 조건에서 스위칭 소자의 전류용량을 고려한 MMC-HVDC 순환전류 제어기법)

  • Kim, Chun-Sung;Jung, Seung-Hwan;Hwang, Jung-Goo;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.55-65
    • /
    • 2016
  • This paper proposed a new control method which is capable of controlling circulating current considering current capacity of switching device. In the unbalanced voltage conditions, active power and reactive power have double line frequency. Thus, in order to provide active power without ripple, it is necessary to inject the negative sequence current components. However, when the negative current components is injected, it increases the total current flowing in the Arm, and in the Sub-module(SM) the current more than rated is impressed, which leads to destroy the system. Also, in impressing the circulating current reference of each arm, conventional control method impressed applicable $i_{dck}/3$ in the case of balanced voltage conditions. In the case of unbalanced conditions, as arm circulating current of three phase show difference due to the power impressed to each arm, reference of each arm is not identical. In this study, in the case of unbalanced voltage, within permitted current, the control method to decrease the ripple of active power is proposed, through circulating current control and current limitations. This control method has the advantage that calculates the maximum active power possible to generate capacity and impressed the current reference for that much. Also, in impressing circulating current reference, a new control method proposes to impress the reference from calculating active power of each phase. The proposed control method is verified through the simulation results, using the PSCAD/EMTDC.

Analysis of Vapor Compression Refrigeration Cycle Performance Depending on Different Joining Method of Non-adiabatic Capillary Tube (비단열 모세관 접합방법이 증기압축식 냉동사이클 성능에 미치는 영향 해석)

  • Yi, Dae-Yong;Park, Sang-Goo;Kim, Hyun-Jung;Jeong, Ji-Hawn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1144-1151
    • /
    • 2009
  • Refrigeration systems can be incorporated with non-adiabatic capillary tubes to improve their efficiency. The non-adiabatic capillary tube is constructed by joining the capillary tube with suction pipe to allow heat transfer between them, which is called capillary tube-suction line heat exchanger(SLHX). There are various joining methods and they may influence the characteristics of the refrigeration cycle. The present work aims to analyze the effect of widely-used two joining methods on the refrigeration cycle. The results show that soldered SLHX has much less thermal resistance than tapered SLHX but slightly outperforms in terms of coefficient of performance(COP) and cooling capacity. The soldered SLHX increased COP and cooling capacity of a refrigerator by 5.09% and 14.77% while the tapered SLHX did by 5.05% and 14.75%, respectively.

A Cascaded D-STATCOM Integrated with a Distribution Transformer for Medium-voltage Reactive Power Compensation

  • Lei, Ertao;Yin, Xianggen;Chen, Yu;Lai, Jinmu
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.522-532
    • /
    • 2017
  • This paper presents a novel integrated structure for a cascaded distribution static compensator (D-STATCOM) and distribution transformer for medium-voltage reactive power compensation. The cascaded multilevel converter is connected to a system via a group of special designed taps on the primary windings of the Dyn11 connection distribution transformer. The three-phase winding taps are symmetrically arranged and the connection point voltage can be decreased to half of the line-to-line voltage at most. Thus, the voltage stress for the D-STATCOM is reduced and a compromise between the voltage rating and the current rating can be achieved. The spare capacity of the distribution transformer can also be fully used. The working mechanism is explained in detail and a modified control strategy is proposed for reactive power compensation. Finally, both simulation and scaled-down prototype experimental results are provided to verify the feasibility and effectiveness of the proposed connection structure and control strategy.

The Study on Correction of Protective Relaying Set Value for the Power Electric Network Paralleled with Wind Farm (풍력전단지의 계통 연계 운전에 따른 보호 계전기 설정치 정정에 관한 고찰)

  • Jang, Sung-Il;Choi, Don-Man;Choi, Jeong-Hwan;Kim, Kwang-Ho;Oh, Jong-Youl;Kim, Joo-Yearl
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.487-490
    • /
    • 2002
  • Wind farm paralleled with electric power network can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the power line with wind farm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator. Consequently, it is difficult to detect the fault happened in the distribution network connected with wind generator. This paper describes the influence of wind turbine generator on the protective relaying system for detecting the fault occurred in a power line network. Simulation results shows that the fault current depends on the fault impedance, location, and the capacity of wind farm and distribution network load.

  • PDF

Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models (선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.

Study on Capacity Design of Active Phase Controller for Distribution Line Reconfiguration (배전선로 재구성을 위한 능동위상제어기의 용량 선정 연구)

  • Jeong, Da-Woom;Kim, Soo-Yeon;Park, Sung-Jun;Kim, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.369-375
    • /
    • 2020
  • Distribution energy resources have been increasing in recent years. However, output power is limited for distribution network stability. This study proposes an active distribution network that can reconfigure distribution lines by using an active phase controller. A conventional distribution network has a fixed structure, whereas an active distribution network has a variable structure. Therefore, the latter can increase the output power of distribution energy resources and decrease the overload of distribution line facilities. An active phase controller has two operation modes for minimizing circulating current during dynamic reconfiguration. In this study, voltage and current control algorithms are proposed for active phase controllers. The simulation of the proposed methods for active phase controllers is performed using PSIM software.