• Title/Summary/Keyword: limited sensor

Search Result 1,023, Processing Time 0.025 seconds

Distributed Computing Models for Wireless Sensor Networks (무선 센서 네트워크에서의 분산 컴퓨팅 모델)

  • Park, Chongmyung;Lee, Chungsan;Jo, Youngtae;Jung, Inbum
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.958-966
    • /
    • 2014
  • Wireless sensor networks offer a distributed processing environment. Many sensor nodes are deployed in fields that have limited resources such as computing power, network bandwidth, and electric power. The sensor nodes construct their own networks automatically, and the collected data are sent to the sink node. In these traditional wireless sensor networks, network congestion due to packet flooding through the networks shortens the network life time. Clustering or in-network technologies help reduce packet flooding in the networks. Many studies have been focused on saving energy in the sensor nodes because the limited available power leads to an important problem of extending the operation of sensor networks as long as possible. However, we focus on the execution time because clustering and local distributed processing already contribute to saving energy by local decision-making. In this paper, we present a cooperative processing model based on the processing timeline. Our processing model includes validation of the processing, prediction of the total execution time, and determination of the optimal number of processing nodes for distributed processing in wireless sensor networks. The experiments demonstrate the accuracy of the proposed model, and a case study shows that our model can be used for the distributed application.

Energy efficient Sensor Network for ubiquitous greenhouse by using Wireless Mesh Networks (유비쿼터스 그린하우스를 위한 무선 메쉬 네트워크를 이용한 에너지 효율적인 센서 네트워크)

  • Im, Hyuk-Jin;Ju, Hui-Dong;Lee, Meong-Hun;Yoe, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2307-2314
    • /
    • 2008
  • The study that automates the variety of equipment using the USN(Ubiquitous Sensor Networks) has been executed, and the research field is ranged to almost all fields including a road, harbors. building, military affairs, agriculture and home. By deploying these sensors into the greenhouse environment, we can monitor the environmental change and the growth of plants 24 hours a day. However, the limited resources of a sensor node like limited energy, short transmission range etc, make it difficult to expand the size of the sensor networks. In this paper, we studied to expand the site of sensor networks by using WMN(Wireless Mesh Networks) with simulation. With this simulation, we could validate that using the Wireless Mesh Networks technology for expanding sensor networks is more efficient in the energy aspect than the normal sensor network.

Sensor Network based Localization and Navigation of Mobile Robot

  • Moon, Tae-Kyung;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1162-1167
    • /
    • 2003
  • This paper presents a simple sensor network consists of a group of sensors, RF components, and microprocessors, to perform a distributed sensing and information transmission using wireless links. In the proposed sensor network, though each sensor node has a limited capability and a simple signal-processing engine, a group of sensor nodes can perform a various tasks through coordinated information sharing and wireless communication in a large working area. Using the capability of self-localization and tracking, we show the sensor network can be applied to localization and navigation of mobile robot in which the robot has to be coordinated effectively to perform given task in real time.

  • PDF

A Medium Access Control Scheme for Reducing Energy Consumption through Avoiding Receipt of Redundant Messages in Wireless Sensor Networks (무선 센서 네트워크에서 중복 메세지 순신 회피를 통한 에너지 소비절감 매체 접근 제어)

  • Han, Jung-An;Lee, Moon-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.13-24
    • /
    • 2005
  • The sensor network is a key component of the ubiquitous computing system which is expected to be widely utilized in logistics control, environment/disaster control, medical/health-care services, digital home and other applications. Nodes in the sensor network are small-sized and exposed to adverse environments. They are demanded to perform their missions with very limited power supply only. Also the sensor network is composed of much more nodes than the wireless ad hoc networks are. In case that some nodes consume up their power capacity, the network topology should change, and rerouting/retransmission is necessitated. Communication protocols studied for conventional wireless networks or ad hoc networks are not suited for the sensor network resultantly. Schemes should be devised to control the efficient usage of node power in the sensor network. This paper proposes a medium access protocol to enhance the efficiency of energy consumption in the sensor network node. Its performance is analyzed by simulation.

  • PDF

MAC Algorithm of Sensor Networks to Service System (서비스 시스템에 따른 센서네트워크 MAC 알고리즘)

  • Park, Woo-Chool;Cho, Soo-Hyung;Lee, Sang-Hak;Kim, Dae-Whan;Yoo, June-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.225-227
    • /
    • 2004
  • A sensor networkis composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. One of the most important constraints on sensor nodes is the low power consumption requirement. Sensor nodes carry limited, generally irreplaceable, power sources. Therefore, while traditional networks aim to achieve high quality of service (QoS) provisions, sensor network protocols must focus primarily on power conservation. This paper presents the characteristics of energy consuming, average delay in 802.11 MAC, S-MAC that is specifically designed for wireless sensor networks. We analyze the energy consuming state in the 802.11 MAC in the simulation topology nodes, and measure average delay in 802.11 and S-MAC. Energy efficiency is the primary goal in this protocol design. 802.11 MAC is more efficient than S-MAC in the average delay, throughput. However S-MAC is an energy efficient protocol, a tradeoff between energy efficiency and delay.

  • PDF

Motion Recognition of Smartphone using Sensor Data (센서 정보를 활용한 스마트폰 모션 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1437-1445
    • /
    • 2014
  • A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).

RESOURCE ORIENTED ARCHITECTURE FOR MUTIMEDIA SENSOR NETWORKS IWAIT2009

  • Iwatani, Hiroshi;Nakatsuka, Masayuki;Takayanagi, Yutaro;Katto, Jiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.456-459
    • /
    • 2009
  • Sensor network has been a hot research topic for the past decade and has moved its phase into using multimedia sensors such as cameras and microphones [1]. Combining many types of sensor data will lead to more accurate and precise information of the environment. However, the use of sensor network data is still limited to closed circumstances. Thus, in this paper, we propose a web-service based framework to deploy multimedia sensor networks. In order to unify different types of sensor data and also to support heterogeneous client applications, we used ROA (Resource Oriented Architecture [2]).

  • PDF

Implementation of Multi-Precision Multiplication over Sensor Networks with Efficient Instructions

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.12-16
    • /
    • 2013
  • Sensor network is one of the strongest technologies for various applications including home automation, surveillance system and monitoring system. To ensure secure and robust network communication between sensor nodes, plain-text should be encrypted using encryption methods. However due to their limited computation power and storage, it is difficult to implement public key cryptography, including elliptic curve cryptography, RSA and pairing cryptography, on sensor networks. However, recent works have shown the possibility that public key cryptography could be made available in a sensor network environment by introducing the efficient multi-precision multiplication method. The previous method suggested a broad rule of multiplication to enhance performance. However, various features of sensor motes have not been considered. For optimized implementation, unique features should be handled. In this paper, we propose a fully optimized multiplication method depending on a different specification for sensor motes. The method improves performance by using more efficient instructions and general purpose registers.

Cluster-Based Mobile Sink Location Management Scheme for Solar-Powered Wireless Sensor Networks

  • Oh, Eomji;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.33-40
    • /
    • 2017
  • In this paper, we propose a sink-location management and data-routing scheme to effectively support the mobile sink in solar-powered WSN. Battery-based wireless sensor networks (WSNs) have a limited lifetime due to their limited energy, but solar energy-based WSNs can be supplied with energy periodically and can operate forever. On the other hand, introduction of mobile sink in WSNs can solve some energy unbalance problem between sink-neighboring nodes and outer nodes which is one of the major challenges in WSNs. However, there is a problem that additional energy should be consumed to notify each sensor node of the location of the randomly moving mobile sink. In the proposed scheme, one of the nodes that harvests enough energy in each cluster are selected as the cluster head, and the location information of the mobile sink is shared only among the cluster heads, thereby reducing the location management overhead. In addition, the overhead for setting the routing path can be removed by transferring data in the opposite direction to the path where the sink-position information is transferred among the heads. Lastly, the access node is introduced to transmit data to the sink more reliably when the sink moves frequently.

A Design of Environment monitoring Server Based Wireless Mesh Networks (Wireless Mesh Networks 기반 환경감시서버 설계)

  • Im, Hyeok-Jin;Ju, Hui-Dong;Lee, Meong-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.671-674
    • /
    • 2007
  • USN (Ubuquitous Sensor Network) identifies that networks are able to gather information from various kinds of sensors with RF. In the USN, it is important that sensor nodes deliver stable data by overcoming limited transmission distance and by setting optimum routes. In this paper, we propose a method to overcome the limited distance of sensor nodes using Wireless Mesh Networks. With this method, environmental monitoring system for u-farm support stable data transmission by applying MAP of Wireless Mesh Networks.

  • PDF