• Title/Summary/Keyword: limited measurements

Search Result 541, Processing Time 0.032 seconds

Estimation of ambient PM10 and PM2.5 concentrations in Seoul, South Korea, using empirical models based on MODIS and Landsat 8 OLI imagery

  • Lee, Peter Sang-Hoon;Park, Jincheol;Seo, Jung-young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Particulate matter (PM) is regarded as a major threat to public health and safety in urban areas. Despite a variety of efforts to systemically monitor the distribution of PM, the limited amount of sampling sites may not provide sufficient coverage over the areas where the monitoring stations are not located in close proximity. This study examined the capacity of using remotely sensed data to estimate the PM10 and PM2.5 concentrations in Seoul, South Korea. Multiple linear regression models were developed using the multispectral band data from the Moderate-resolution imaging spectro-radiometer equipped on Terra (MODIS) and Operational Land Imager equipped on Landsat 8 (Landsat 8) and meteorological parameters. Compared to MODIS-derived models (r2 = 0.25 for PM10, r2 = 0.30 for PM2.5), the Landsat 8-derived models showed improved model reliabilities (r2 = 0.17 to 0.57 for PM10, r2 = 0.47 to 0.71 for PM2.5). Landsat 8 model-derived PM concentration and ground-truth PM measurements were cross-validated to each other to examine the capability of the models for estimating the PM concentration. The modeled PM concentrations showed a stronger correlation to PM10 (r = 0.41 to 0.75) than to PM2.5 (r = 0.14 to 0.82). Overall, the results indicate that Landsat 8-derived models were more suitable in estimating the PM concentrations. Despite the day-to-day fluctuation in the model reliability, several models showed strong correspondences of the modeled PM concentrations to the PM measurements.

A Kalman filter based algorithm for wind load estimation on high-rise buildings

  • Zhi, Lun-hai;Yu, Pan;Tu, Jian-wei;Chen, Bo;Li, Yong-gui
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.449-459
    • /
    • 2017
  • High-rise buildings are generally sensitive to strong winds. The evaluation of wind loads for the structural design, structural health monitoring (SHM), and vibration control of high-rise buildings is of primary importance. Nevertheless, it is difficult or even infeasible to measure the wind loads on an existing building directly. In this regard, a new inverse method for evaluating wind loads on high-rise buildings is developed in this study based on a discrete-time Kalman filter. The unknown structural responses are identified in conjunction with the wind loads on the basis of limited structural response measurements. The algorithm is applicable for estimating wind loads using different types of wind-induced response. The performance of the method is comprehensively investigated based on wind tunnel testing results of two high-rise buildings with typical external shapes. The stability of the proposed algorithm is evaluated. Furthermore, the effects of crucial factors such as cross-section shapes of building, the wind-induced response type, errors of structural modal parameters, covariance matrix of noise, noise levels in the response measurements and number of vibration modes on the identification accuracy are examined through a detailed parametric study. The research outputs of the proposed study will provide valuable information to enhance our understanding of the effects of wind on high-rise buildings and improve codes of practice.

Cephalometric predictors of treatment outcome with mandibular advancement devices in adult patients with obstructive sleep apnea: a systematic review

  • Alessandri-Bonetti, Giulio;Ippolito, Daniela Rita;Bartolucci, Maria Lavinia;D'Anto, Vincenzo;Incerti-Parenti, Serena
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.308-321
    • /
    • 2015
  • Objective: The efficacy of mandibular advancement devices (MADs) in the treatment of obstructive sleep apnea (OSA) ranges between 42% and 65%. However, it is still unclear which predictive factors can be used to select suitable patients for MAD treatment. This study aimed to systematically review the literature on the predictive value of cephalometric analysis for MAD treatment outcomes in adult OSA patients. Methods: The MEDLINE, Google Scholar, Scopus, and Cochrane Library databases were searched through December 2014. Reference lists from the retrieved publications were also examined. English language studies published in international peer-reviewed journals concerning the predictive value of cephalometric analysis for MAD treatment outcome were considered for inclusion. Two review authors independently assessed eligibility, extracted data, and ascertained the quality of the studies. Results: Fifteen eligible studies were identified. Most of the skeletal, dental, and soft tissue cephalometric measurements examined were widely recognized as not prognostic for MAD treatment outcome; however, controversial and limited data were found on the predictive role of certain cephalometric measurements including cranial base angle, mandibular plane angle, hyoid to mandibular plane distance, posterior nasal spine to soft-palate tip distance, anterior nasal spine to epiglottis base distance, and tongue/oral cross sectional area ratio thus justifying additional studies on these parameters. Conclusions: Currently available evidence is inadequate for identification of cephalometric parameters capable of reliably discriminating between poor and good responders to MAD treatment. To guide further research, methodological weaknesses of the currently available studies were highlighted and possible reasons for their discordant results were analyzed.

Estimation of Structural Dynamic Responses Using Partial Response Measurements (부분적 측정데이타를 이용한 구조시스템의 동적응답 추정기법)

  • 김학수;양경택
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • When applying a system identification technique, which incorporates an experimental model to a corresponding finite element model of a structure, one of the major problems is the large difference in the numbers of degrees of freedom (dof) between the two models. While there are large number of dofs in a finite element model, the number of measurement points is practically limited. So it is very difficult to incorporate them. Especially rotational dofs are hard to measure. In this study a method is presented for estimating structural dynamic responses at unmeasurable locations in frequency domain. The proposed method is tested numerically and the feasibility for practical application has been demonstrated through an example structure under moving loads, where translational and rotational dofs of beam at a center point are estimated from the partial measurements of responses at accessible points.

  • PDF

Development of a Diagnosis Algorithm of Influent Loading Levels Using Pattern Matching Method in Sequencing Batch Reactor (SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 유입수 부하수준 진단 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Kim, Hyo-Su;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • DO, ORP and pH values measured during SBR operation can provide information about removal reaction of organic contaminants and nutrient materials in the reactor. It is already generalized control strategy to control reaction phase time using their special patterns indicating the end of the removal reactions. However, those informations are limited to point out the end time of oxidative reaction in the aerobic phase or reductive reaction in the anoxic phase without giving quantitative value of influent loading level. In this research, a diagnosis algorithm which can estimate the loading level of carbon and ammonia as high, medium and low was developed using the basic measurements like DO, ORP, and pH. It will be possible to know the level of influent loading rate from those online measurements without experimental analysis.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Experimental observation and numerical simulation of cement grout penetration in discrete joints

  • Lee, Jong-Won;Kim, Hyung-Mok;Yazdani, Mahmoud;Lee, Hangbok;Oh, Tae-Min;Park, Eui-Seob
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.259-266
    • /
    • 2019
  • This paper presents a comparison between experimental measurements and numerical estimations of penetration length of a cement grout injected in discrete joints. In the experiment, a joint was generated by planar acryl plates with a certain separation distance (; aperture) and was designed in such a way to vary the separation distances. Since a cement grout was used, the grout viscosity can be varied by controlling water-cement (W/C) ratios. Throughout these experiments, the influence of joint aperture, cement grout viscosity, and injection rate on a penetration length in a discrete joint was investigated. During the experiments, we also measured the time-dependent variation of grout viscosity due to a hardening process. The time-dependent viscosity was included in our numerical simulations as a function of elapsed time to demonstrate its impact on the estimation of penetration length. In the numerical simulations, Bingham fluid model that has been known to be applicable to a viscous cement material, was employed. We showed that the estimations by the current numerical approach were well comparable to the experimental measurements only in limited conditions of lower injection rates and smaller joint apertures. The difference between two approaches resulted from the facts that material separation (; bleeding) of cement grout, which was noticeable in higher injection rate and there could be a significant surface friction between the grout and joint planes, which are not included in the numerical simulations. Our numerical simulation, meanwhile, could well demonstrate that penetration length can be significantly over-estimated without considering a time-dependency of viscosity in a cement grout.

A Systemic Review of Recent Randomized Controlled Trials of Insomnia in Climacteric Syndrome Treated with Acupuncture (갱년기 증후군으로 인한 불면의 침 치료 무작위 대조군 최신 연구의 체계적 문헌 고찰과 메타 분석)

  • Na, Jee-Young;Park, Jang-Kyung;Yoon, Young-Jin
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.35 no.3
    • /
    • pp.56-73
    • /
    • 2022
  • Objectives: This study was aimed to review the effect of acupuncture for insomnia in climacteric syndrome. Methods: Researchers searched data through 5 online databases up to December 2021. The data was limited to randomized controlled trial studies on patients diagnosed with insomnia in climacteric syndrome. Results: 8 Randomized controlled trials were included in this study. 6 of studies were published in Chinese, in China. 2 were published in English. Intervention of treatment group were composed of simple acupuncture. Intervention of control group were made up with Estazolam, Alprazolam, Lorazepam and sham-acupuncture. Outcome measurements were Total effective rate, Pittsburgh Sleep Quality Index (PSQI), Kupperman index, Menopause Quality of Life scales (Men-QoL), the level of hormones (E2, FSH, LH) etc. In all outcome measurements, treatment group were more effective than control group and it was statistically significant. Conclusions: Acupunture therapy is effective for treating insomnia in climacteric syndrome. Pittsburgh Sleep Quality Index (PSQI) is most frequently used for sleep assessment indicator. 神門 (HT7) is the most frequently used acupoint for treatment group. However because insomnia in climacteric syndrome is easy to recur, additional long-term research is needed.

Process analytical technology (PAT): field applications and current status in pharmaceutical industries (공정분석기술: 제약산업에서의 기술개발 사례 및 현황)

  • Woo, Young-Ah;Kim, Jong-Yun;Park, Yong Joon;Yeon, Jei-Won;Song, Kyuseok;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • The goal of PAT (Process Analytical Technology) is to build quality into products through better understanding and control of manufacturing processes, rather than merely testing the quality of the end product. Pharmaceutical manufacturers are trying to develop and implement new technologies in pharmaceutical production and quality control for real-time measurements of critical product and process parameters. Characterization of manufacturing process through experimental design, for evaluation of the effect of product and process variables, represents an integral part of the PAT framework. However, the publications regarding real PAT application to pharmaceutical process are very limited and the technologies are confidential as well. In this review, the case studies related to PAT are shown with real applications from a pharmaceutical company. Additionally, various applications of PAT on the developing stage are introduced with high analytical technologies for the improvement of quality control on manufacturing process.