• Title/Summary/Keyword: limited measurements

Search Result 541, Processing Time 0.034 seconds

Association between cardiovascular disease and limited oral function (심혈관계 질환과 구강기능제한의 관련성)

  • Kim, Sun-Mi;Kim, In-Ja
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.6
    • /
    • pp.751-761
    • /
    • 2021
  • Objectives: The purpose of this study was to examine the relationship between limited oral function and cardiovascular disease in adults over 40 years of age. Methods: Data from the Seventh Korean National Health and Nutrition Examination Survey (2016-2018) was used. In this study, 8,766 adults over the age of 40 years were included as study subjects. They completed a health survey which included current prevalence of hypertension, stroke, myocardial infarction, and angina pectoris, as well as information about blood tests, physical measurements, and oral examinations. Statistical analyses were carried out using complex sample cross-tabulation analysis, general linear model, and logistic regression analysis. Results: The study showed that limited oral function was experienced by patients with stroke (61.3%), myocardial infarction (49.1%), cardiovascular disease (38.5%), hypertension (38.1%), and angina (36.4%) (p<0.05). In patients with stroke, the risk of limited oral function was 2.393 times higher than in patients without stroke. Patients with hypertension were 1.233 times more at risk of speaking difficulty than those without hypertension. Conclusions: Limited oral function is associated with cardiovascular disease. To improve oral health, it is necessary to provide integrated, health-based oral care.

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

eLoran Navigation Algorithm Considering Errors Proportional to the Range (거리에 비례하는 오차를 고려한 eLoran 항법 알고리즘)

  • Song, Se-Phil;Choi, Heon-Ho;Kim, Young-Baek;Lee, Sang-Jeong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2326-2332
    • /
    • 2011
  • eLoran is enhanced Loran-C and eLoran is researched for as GPS backup system because this system is resistant to signal interference and has high accuracy. TOA measurements of eLoran include errors proportional to the range such as PF, SF, ASF and EF. Therefore these error factors must be compensated for improved accuracy of position. Generally, error models or GPS aided compensation methods are used, but these methods are limited by lack of infrastructure or system performance. Therefore, this paper proposes new model of error factors included in eLoran TOA measurements and navigation algorithm using this model. Error factors in this model are sum of a certain size of error and error proportional to the range. And feasibility and performance of proposed navigation algorithm are verified by using raw measurements.

Growth Response of Pinus densiflora to Hydrologic Conditions in the Central Korea (수문 요인에 대한 중부 지역 소나무의 생장 반응)

  • Kim, Je-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.66-71
    • /
    • 1999
  • Main concern is to figure out the growth response of Pinus densiflora to hydrologic conditions in the central Korea. Continuous measurements were carried out with six trees with dendrometers in the Chungbuk National University experimental forest (Wolak-san) during 1995~1996. Surrounding hydrological conditions reflected by the solar radiation, air temperature, precipitation, soil water were included in measurements. Their effects on the biological response of trees was investigated and expressed as response functions. With these response functions, tree growth model was developed. Soil water availability was more related to the tree growth than air temperature. Limited number of biological measurements with dendrometer could permit determination of dynamics of radial tree growth to the hydrological conditions. Tree growth model could be used to check and revise the statistical transfer function of dendrohydrology.

  • PDF

IMPROVEMENT OF RADIAL VELOCITY MEASUREMENT ACCURACY BY TELLURIC LINES (대기 흡수선을 이용한 시선속도 측정 정밀도 향상)

  • Han, In-Woo;Kim, Kang-Min;Kang, Dong-Il;Lee, Byeong-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • We present a method to improve the RV (radial velocity) measurements accuracy by using telluric lines. Telluric lines are used to estimate the wavelength scale drift over the detector of the spectrograph. In the case of BOES, the Echelle spectrograph at BOAO (Bohyunsan Optical Astronomical Observatory), the wavelength scale drift can be several hundreds m/s over 24 hours. Due to the wavelength scale drift, the RV measurements accuracy of BOES is limited to several hundreds m/s. By estimating the wavelength scale drift by telluric lines, we can remove its effect to improve the RV measurements accuracy to about 40 m/s.

DETERMINATION OF THE FLEXURAL RIGIDITY OF A BEAM FROM LIMITED BOUNDARY MEASUREMENTS

  • LESNIC DANIEL
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.17-34
    • /
    • 2006
  • Inverse coefficient identification problems associated with the fourth-order Sturm-Liouville operator in the steady state Euler-Bernoulli beam equation are investigated. Unlike previous studies in which spectral data are used as additional information, in this paper only boundary information is used, hence non-destructive tests can be employed in practical applications.

Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records (상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정)

  • Kim Jae Min;Feng. M. Q.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia;Zhang, Xiaoxiong;Dai, Naxin
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON GPS HEIGHT DETERMINATION

  • Huang, Yu-Wen;Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.748-751
    • /
    • 2006
  • Positioning accuracy by the Global Positioning System (GPS) is of great concern in a variety of research tasks. It is limited due to error sources such as ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric influence. In this study, the tropospheric influence, primarily due to water vapour inhomogeneity, on GPS positioning height is investigated. The data collected by the GPS receivers along with co-located surface meteorological instruments in 2003 are utilized. The GPS receivers are established as continuously operating reference stations by the Ministry of the Interior (MOI), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) of Taiwan, and International GNSS Service (IGS). The total number of GPS receivers is 21. The surface meteorological measurements include temperature, pressure, and humidity. They are introduced to GPS data processing with 24 troposphere parameters for the station heights, which are compared with those obtained without a priori knowledge of surface meteorological measurements. The results suggest that surface meteorological measurements have an expected impact on the GPS height. The daily correction maximum with the meteorological effect may be as large as 9.3 mm for the cases of concern.

  • PDF