• Title/Summary/Keyword: limited measurements

Search Result 541, Processing Time 0.032 seconds

Substructure based structural damage detection with limited input and output measurements

  • Lei, Y.;Liu, C.;Jiang, Y.Q.;Mao, Y.K.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.619-640
    • /
    • 2013
  • It is highly desirable to explore efficient algorithms for detecting structural damage of large size structural systems with limited input and output measurements. In this paper, a new structural damage detection algorithm based on substructure approach is proposed for large size structural systems with limited input and output measurements. Inter-connection effect between adjacent substructures is treated as 'additional unknown inputs' to substructures. Extended state vector of each substructure and its unknown excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. It is shown that the 'additional unknown inputs' can be estimated by the algorithm without the measurements on the substructure interface DOFs, which is superior to previous substructural identification approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which simplifies the identification problem compared with other existing work. Structural damage can be detected from the degradation of the identified substructural element stiffness values. The performances of the proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement noise effect is considered. Both the simulation results and experimental data validate that the proposed algorithm is viable for structural damage detection of large size structural systems with limited input and output measurements.

Gaussian process approach for dose mapping in radiation fields

  • Khuwaileh, Bassam A.;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1807-1816
    • /
    • 2020
  • In this work, a Gaussian Process (Kriging) approach is proposed to provide efficient dose mapping for complex radiation fields using limited number of responses. Given a few response measurements (or simulation data points), the proposed approach can help the analyst in completing a map of the radiation dose field with a 95% confidence interval, efficiently. Two case studies are used to validate the proposed approach. The First case study is based on experimental dose measurements to build the dose map in a radiation field induced by a D-D neutron generator. The second, is a simulation case study where the proposed approach is used to mimic Monte Carlo dose predictions in the radiation field using a limited number of MCNP simulations. Given the low computational cost of constructing Gaussian Process (GP) models, results indicate that the GP model can reasonably map the dose in the radiation field given a limited number of data measurements. Both case studies are performed on the nuclear engineering radiation laboratories at the University of Sharjah.

Pre-processing Faded Measurements for Bearing-and-Frequency Target Motion Analysis

  • Lee, Man-Hyung;Moon, Jeong-Hyun;Kim, In-Soo;Kim, Chang-Sup;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.424-433
    • /
    • 2008
  • An ownship with towed array sonar (TAS) has limited maneuvers due to its dynamic feature, bearing and frequency measurements of a target which are not detected continuously but are often lost in ocean environment. We propose a pre-processing algorithm for the faded bearing and frequency measurements to solve the BFTMA problem of TAS under limited detection conditions. The proposed pre-processing algorithm to restore the faded bearing and frequency measurements is implemented to perform a BFTMA filter even if the measurements of a target are not continuously detected. The Modified Gain Extended Kalman Filter (MGEKF) method based on the Interacting Multiple Model (IMM) structure is applied for a BFTMA filter algorithm to estimate the target. Simulations for the various conditions were carried out to verify the applicability of the proposed algorithms, and confirmed superior estimation performance compared with the existing Bearings-Only TMA (BOTMA).

Substructural parameters and dynamic loading identification with limited observations

  • Xu, Bin;He, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.169-189
    • /
    • 2015
  • Convergence difficulty and available complete measurement information have been considered as two primary challenges for the identification of large-scale engineering structures. In this paper, a time domain substructural identification approach by combining a weighted adaptive iteration (WAI) algorithm and an extended Kalman filter method with a weighted global iteration (EFK-WGI) algorithm was proposed for simultaneous identification of physical parameters of concerned substructures and unknown external excitations applied on it with limited response measurements. In the proposed approach, according to the location of the unknown dynamic loadings and the partially available structural response measurements, part of structural parameters of the concerned substructure and the unknown loadings were first identified with the WAI approach. The remaining physical parameters of the concerned substructure were then determined by EFK-WGI basing on the previously identified loadings and substructural parameters. The efficiency and accuracy of the proposed approach was demonstrated via a 20-story shear building structure and 23 degrees of freedom (DOFs) planar truss model with unknown external excitation and limited observations. Results show that the proposed approach is capable of satisfactorily identifying both the substructural parameters and unknown loading within limited iterations when both the excitation and dynamic response are partially unknown.

Identification of Structural Damage with Limited Output Measurement (제한된 출력자료를 이용한 구조물의 손상도 추정)

  • 최영민;조효남;황윤국;김정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.101-108
    • /
    • 2001
  • In the previous study, an improved QRD (QR Decomposition)-ILS(Iterative Least-Squares) method is proposed to estimate the structural parameters at the element level using response data alone without using any information of excitation measurements for the assessment of local damages and deterioration in complex and large structural systems. But for a complex and large structural system, where response measurement at every dynamic degree of freedom(DDOF) is not possible, the absence of some observation points of responses and its effect on the proposed SI method must be studied In the paper, a QRD-ILS technique that utilizes the known intact stiffness information estimated based on the visual inspection, field measurements and/or NDT tests is proposed to identify local damages of fracture critical members using measured responses only at limited DDOFs. A numerical example is used to illustrate the application of this technique. The results indicate that the proposed SI technique is very simple but efficient, since no input information are required with only limited observations.

  • PDF

Reference State Tracking in Distributed Leader-Following Wireless Sensor Networks with Limited Errors

  • Mou, Jinping;Wang, Jie
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.602-608
    • /
    • 2015
  • In this paper, the limited error tracking problem is investigated for distributed leader-following wireless sensor networks (LFWSNs), where all sensors share data by the local communications, follower sensors are influenced by leader sensors directly or indirectly, but not vice versa, all sensor nodes track a reference state that is determined by the states of all leader sensors, and tracking errors are limited. In a LFWSN, the communicating graph is mainly expressed by some complete subgraphs; if we fix subgraphs that are composed of all leaders while all nodes in complete subgraphs of followers run on the sleeping-awaking method, then the fixed leaders and varying followers topology is obtained, and the switching topology is expressed by a Markov chain. It is supposed that the measurements of all sensors are corrupted by additive noises. Accordingly, the limited error tracking protocol is proposed. Based on the theory of asymptotic boundedness in mean square, it is shown that LFWSN keeps the limited error tracking under the designed protocol.

Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

  • Lee, Kwangwon;Oh, Hyungjik;Park, Han-Earl;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than $0.001^{\circ}$ at relative distances greater than 30 km.

Measurement of Transient Electric Field Emission from a 245 kV Gas Insulated Substation Model during Switching

  • Rao, M. Mohana;Thomas, M. Joy;Singh, B.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.306-311
    • /
    • 2007
  • The transient fields generated during switching operations in a Gas Insulated Substation (GIS) are associated with high frequency components in the order of few tens of MHz. These transient fields leak into the external environment of the gas-insulated equipment and can interfere with the nearby electronics. Measurements of the transient fields are thus required to characterise the interference caused by switching phenomena in such substations. In view of the above, E-field emission measurement during a switching operation has been carried out for a 245 kV GIS model, using a resonant dipole antenna and D-dot sensor. The characteristics of the E-fields i.e., frequency spectra and their levels have been analysed and are reported in the paper. Suitability of the measurements has been confirmed by comparing frequency spectra of the measured and computed transient fields.

Ohmic Contact for Hole Injection Probed by Dark Injection Space-Charge-Limited Current Measurements

  • Song, Ok-Keun;Koo, Young-Mo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1061-1064
    • /
    • 2009
  • Through dark injection space-charge-limited current (DI-SCLC) and trap-free SCLC measurements, it has been demonstrated that an indium tin oxide (ITO)/buckminsterfullerene ($C_{60}$) electrode can form a quasi-Ohmic contact with N, N'-bis (naphthalen-1-yl)-N, N'-bis(phenyl) benzidine (NPB). The DI-SCLC results show a clear peak current along with a shift of the peak position as the field intensity varies, implying an Ohmic (or quasi-Ohmic) contact. A theoretical simulation of the SCLC also shows that ITO/$C_{60}$ forms an Ohmic contact with NPB. The Ohmic contact makes it possible to estimate the NPB hole mobility through the use of both DI-SCLC and trap-free SCLC analysis. This also contributes to a reduction in power consumption.

  • PDF

PREDICTIONS OF CRITICAL HEAT FLUX USING THE ASSERT-PV SUBCHANNEL CODE FOR A CANFLEX VARIANT BUNDLE

  • Onder, Ebru Nihan;Leung, Laurence Kim-Hung;Rao, Yanfei
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.969-978
    • /
    • 2009
  • The ASSERT-PV subchannel code developed by AECL has been applied as a design-assist tool to the advanced $CANDU^{(R)1}$ reactor fuel bundle. Based primarily on the $CANFLEX^{(R)2}$ fuel bundle, several geometry changes (such as element sizes and pitch-circle diameters of various element rings) were examined to optimize the dryout power and pressure-drop performances of the new fuel bundle. An experiment was performed to obtain dryout power measurements for verification of the ASSERT-PV code predictions. It was carried out using an electrically heated, Refrigerant-134a cooled, fuel bundle string simulator. The axial power profile of the simulator was uniform, while the radial power profile of the element rings was varied simulating profiles in bundles with various fuel compositions and burn-ups. Dryout power measurements are predicted closely using the ASSERT-PV code, particularly at low flows and low pressures, but are overpredicted at high flows and high pressures. The majority of data shows that dryout powers are underpredicted at low inlet-fluid temperatures but overpredicted at high inlet-fluid temperatures.