• Title/Summary/Keyword: limit strain

Search Result 507, Processing Time 0.029 seconds

INVESTIGATION ON PREDICTION OF FORMING LIMIT FOR COLD UPSETTING BY UTILIZING ENERGY FRACTURE CRITERION

  • Lee Rong-Shean;Wang Shui-To;Chen Jih-Hsing
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.22-25
    • /
    • 2003
  • The forming limits are studied for cold upsetting of high strength aluminium alloy in the present paper. Different geometry ratio and frictional conditions are investigated in the forgeability test to evaluate the forming limits and also to obtain the various strain paths. The critical fracture value can be obtained by integrating along the strain path till free surface crack initiation. To predict the damage evolution of cold upsetting, the computer-aided evaluation of forming limits is obtained by using the finite-element software DEFORM-3D and the modified Cockcroft-Latham criterion. The predicted theoretical limit strains agree quite well with the experimental results.

  • PDF

Numerical Investigation of Forming Limit of Coated Sheet Metals (코팅제의 변형한계에 대한 수치적연구)

  • 정태훈;김종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.460-464
    • /
    • 1997
  • By the used of a similar numerical method as in the previous paper, the forming limit stain of coatedsheet metals is investigated in which the FEM is applied and J2G(J/sab 2/-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Coated two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stetched in a plane-strain atate, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the coated state, the higher limiting strain of one layer is reduced due to the lower limiting stain of the other layer and vice, and does not necessarily obey the rule of linear combination of the limiting stain of each layer weighted according thickness.

  • PDF

Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.431-458
    • /
    • 2014
  • Construction of a new cavern close to an existing cavern will result in a modification of the state of stresses in a zone around the existing cavern as interaction between the twin caverns takes place. Extensive plane strain finite difference analyses were carried out to examine the deformations induced by excavation of underground twin caverns. From the numerical results, a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) has been used to relate the maximum key point displacement and the percent strain to various parameters including the rock quality, the cavern geometry and the in situ stress. Probabilistic assessments on the serviceability limit state of twin caverns can be performed using the First-order reliability spreadsheet method (FORM) based on the built MARS model. Parametric studies indicate that the probability of failure $P_f$ increases as the coefficient of variation of Q increases, and $P_f$ decreases with the widening of the pillar.

Plastic Limit Loads of 90° Elbows with Local Wall Thinning using Small Strain FE Limit Analyses (I) - Internal Pressure - (소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 한계하중 (I) - 내압 -)

  • An, Joong-Hyok;Kim, Jong-Hyun;Hong, Seok-Pyo;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.586-593
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbow with local wall thinning at extrados under internal pressure. This work was performed using 3-dimensional, small strain FE analyses based on elastic-perfectly plastic materials. The wide range of elbow and local wall thinning geometries are considered. For systematic analyses for effect of axial thinning extent on limit loads, two limiting cases are considered; a sufficiently long thinning, and the circumferential part-through surface crack. Then, the closed-form plastic limit load solutions for intermediate thinning are obtained by using result of two limiting cases. The effect of axial thinning extent for elbow on plastic limit load is highlighted by comparing with that for straight pipes. Although the proposed limit load solutions are developed for the case when local wall thinning exist in the center of elbow, it is also shown that they can be applied to the case when local wall thinning exists anywhere within elbow.

Plastic Limit Loads of 90° Elbows with Local Wall-Thinning Using Small Strain FE Limit Analyses (II)- Bending Moment - (소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 소성 한계 하중 (II)- 굽힘 -)

  • Kim, Jong-Hyun;An, Joong-Hyok;Hong, Seok-Pyo;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.496-505
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbows under in-plane bending, via three-dimensional (3-D), small strain FE limit analyses using elastic-perfectly plastic materials. A wide range of elbow and thinning geometries are considered. For systematic analyses of the effect of the axial thinning length on limit loads, two limiting cases are considered; a sufficiently long wall thinning, and the circumferential part-through surface crack. Closed-form plastic limit load solutions for wall thinning with intermediate longitudinal extents are then obtained from these two limiting cases. The effect of the axial extent of wall thinning on plastic limit loads for elbows is highlighted by comparing that for straight pipes. Although the proposed solutions are developed for the case when wall thinning exists in the center of elbows, it is also shown that they can be applied to the case when wall thinning exists anywhere within the elbow.

Study of Forming Limit of Bonded Sheet Metals due to Shear Band Localization (전단띠형성에 의한 접합판의 성형한계 연구)

  • ;Manabu GOTOH
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.778-782
    • /
    • 1996
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain of bonded sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Bonded two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Uniaxial Tension (유리 섬유 강화 열가소성 복합재료의 1축 인장시 재료거동에 대한 연구)

  • Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.96-101
    • /
    • 1996
  • Glass fiber reinforced polymeric composites hold considerable promise for increased use in low cost high volume applications because of the potential for processing by solid phase forming. Unfortunately, because of the wide variety of such materials, inherent bariability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Of particular importance is failure during processing due to localized necking instability, and it is this phenomenon that is primary focus of this study. The strain rate and temperature dependence is used to predict limiting tensile strains, based on Mackinack imperfection theory. Excellent correlation was obtained between theory and experiment, and the results are summarized in the limit strains as a function of temperature and stain rate.

  • PDF

A Study on the Prediction of Limit Drawing Ratio And Forming Load in Redrawing of Sheet Metal (박판의 재인발 가공 에서의 한계인발비 및 성형하중 의 예측 에 관한 연구)

  • 박장호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 1983
  • The study is concerned with the analysis of sheet metal for the prediction of limit drawing ratio and forming load. The direct redrawing process is analyzed by using an equilibrium approach and strain increment theory both for non-workhardening material and for workhardening material. Computations are carried out numerically for the workhardening case. Limit drawing ratios are predicted for some chosen variables. The forming loads are also computed with respect to punch travel. Then the predicted loads are compared with the experimental results. For ordinary lubricated conditions, the comparison shows reasonable agreement between the theory and experimental observation. It is also shown that limit drawing ration can be increased by using a greater die angle and proper lubrication significantly reduces the punch load. Finally numerical results show that material of greater R-value and strain-hardening exponent(n)is better for direst redrawing of sheet metal.

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature (316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토)

  • Lim Jae-Yong;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.