• Title/Summary/Keyword: limit strain

Search Result 507, Processing Time 0.03 seconds

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

Post-yielding tension stiffening of reinforced concrete members using an image analysis method with a consideration of steel ratios

  • Lee, Jong-Han;Jung, Chi-Young;Woo, Tae-Ryeon;Cheung, Jin-Hwan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • When designing reinforced concrete (RC) members, the rebar is assumed to resist all tensile forces, but the resistance of the concrete in the tension area is neglected. However, concrete can also resist tensile forces and increase the tensile stiffness of RC members, which is called the tension stiffening effect (TSE). Therefore, this study assessed the TSE, particularly after yielding of the steel bars and the effects of the steel ratio on the TSE. For this purpose, RC member specimens with steel ratios of 2.87%, 0.99%, and 0.59% were fabricated for uniaxial tensile tests. A vision-based non-contact measurement system was used to measure the behavior of the specimens. The cracks on the specimen at the stabilized cracking stage and the fracture stage were measured with the image analysis method. The results show that the number of cracks increases as the steel ratio increases. The reductions of the limit state and fracture strains were dependent on the ratio of the rebar. As the steel ratio decreased, the strain after yielding of the RC members significantly decreased. Therefore, the overall ductility of the RC member is reduced with decreasing steel ratio. The yielding plateau and ultimate load of the RC members obtained from the proposed equations showed very good agreement with those of the experiments. Finally, the image analysis method was possible to allow flexibility in expand the measurement points and targets to determine the strains and crack widths of the specimens.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

Performance Comparison of Machine Learning Models to Detect Screen Use and Devices (스크린 사용 여부 및 사용 디바이스 감지를 위한 머신러닝 모델 성능 비교)

  • Hwang, Sangwon;Kim, Dongwoo;Lee, Juhwan;Kang, Seungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.584-590
    • /
    • 2020
  • Long-term use of digital screens in daily life can lead to computer vision syndrome including symptoms such as eye strain, dry eyes, and headaches. To prevent computer vision syndrome, it is important to limit screen usage time and take frequent breaks. There are a variety of applications that can help users know the screen usage time. However, these apps are limited because users see various screens such as desktops, laptops, and tablets as well as smartphone screens. In this paper, we propose and evaluate machine learning-based models that detect the screen device in use using color, IMU and lidar sensor data. Our evaluation shows that neural network-based models show relatively high F1 scores compared to traditional machine learning models. Among neural network-based models, the MLP and CNN-based models have higher scores than the LSTM-based model. The RF model shows the best result among the traditional machine learning models, followed by the SVM model.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Compressive Strength and Environmental Investigation for Beneficial Use of Dredged Sediments (준설퇴적물 유효활용을 위한 압축강도 및 환경성 평가)

  • Yoon, Gil Lim;Bae, Yoon Shin;Yoon, Yeo Won;Kim, Suk Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.119-131
    • /
    • 2010
  • In this study, beneficial use of ocean contaminated sediments were investigated by laboratory and environmental tests, and their prototypes were released. Dredged material from Ulsan port is used for making cement treated samples and lightweight foamed samples, and various engineering tests were performed to identify the compressibility and stress-strain behaviors. Environmental tests were also performed for the beneficial uses. The values of Cu are a little higher than the suggested standard possible for reusing dredged material and equal to the suggested standard alarming for reusing dredged material, which shows environmental harmfulness for the reuse of construction material. In addition, particle size distribution, compaction test, Atterberg limit tests, specific gravity test, and unit weight test were performed to investigate the use of landfill cover materials. The shear strengths of cement treated soils were found to be enough for reclamation works.

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.

Mechanical Behavior of High-tension Bolted Joints with Varying Bolt Size and Plate Thickness (볼트의 크기 및 판두께의 차이에 따른 고장력볼트 이음부의 역학적 거동에 관한 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Sung Hoon;Park, Cheol Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.67-74
    • /
    • 2006
  • The use of steel plates has been greatly increased in bridge construction, particularly for long-span bridges. For connections of those steel plates in the field, application of high-tension bold, such as M30, is highly demanded. However, the current steel construction specifications in Korea do not provide information for large-sized bolt connections. In order to evaluate the applicability of the large-sized high-tension bolt, this study experimentally investigates relaxation and slip behavior of M30 bolts with varying bolt size and plate thickness. In addition, internal compressive stress was computed using FEM analysis. The analyzed results were compared with the stress distribution measured from strain gages attached on bolts and bolt holes. From the study presented herein, the M30 high-tension bolts are anticipated to be successfully used with the relaxation less than 10% and the slip coefficient satisfying the specified limit.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.