• Title/Summary/Keyword: limit strain

검색결과 507건 처리시간 0.031초

시간의존법에 의한 금속판재 성형한계변형률의 결정 (Determination of the Forming Limit Strain of Sheet Metals by the Time-dependent Method)

  • 김성곤;오태환;김진동;김형종
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.361-367
    • /
    • 2015
  • The forming limit diagram (FLD) is the most commonly used tool for evaluating of sheet metal formability in the manufacturing field as well as the finite element analysis (FEA)-based design process. Determination of the forming limits is considerably influenced by testing/measuring machines, techniques and conditions. These influences may cause a large scatter in FLD from laboratory to laboratory. Scatter is especially true when the ‘position-dependent method’, as is specified in most national and international standards, is used. In the current study a new ‘time-dependent method’ is proposed, which is to determine the forming limit strains more accurately and reasonably when producing a FLD from experimental data. This method is based on continual strain measurement during the test. The results are compared to those from the existing standardized methods.

소성 변형률 포텐셜에 기초한 성형 한계도의 정식화 (Formulation of forming limit diagram based on strain-rate potential)

  • 김대용;정관수;김기주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.156-159
    • /
    • 2004
  • Most formulations for a forming limit diagram (FLD) have been based on yield stress potentials defined in the stress field. Nevertheless, there are formulations where potentials defined in the stain-rate field are especially convenient to formulate the rigid plastic material. Based on a strain-rate potential proposed for materials exhibiting planar anisotropic, the formulations for the forming limit diagram has been developed applying M-K theory. As verification example, the formulation is applied for anisotropic AA5182-O sheet. The good verification results show that the formulation for the forming limit diagram has been successfully developed.

  • PDF

변형률속도를 고려한 DP590의 성형한계도 (Forming Limit Diagram of DP590 considering the Strain Rate)

  • 김석봉;안광현;하지웅;이창수;허훈;복현호;문만빈
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.127-130
    • /
    • 2010
  • This paper deals with the formability of DP590 steel considering the strain rate. The strain hardening coefficient, elongation and r-value were obtained from the static and dynamic tensile test. As strain rate increases from static to 100/s, the strain hardening coefficient and the uniform elongation decrease and the elongation at fracture and r-value decrease to 0.1/s and increase again to 100/s. The high speed forming limit tests with hemi-spherical punch were carried out using the high speed crash testing machine and high speed forming jig. The high speed forming limit of DP590(order of $10^2$/s) decreases compared to the static forming limit(order of $10^{-3}$/s) and the forming limit band in high speed forming test is narrower than that in the static forming test. This tendency may be due to the development of brittleness with increase of stain rate.

이축 및 일축 예변형에 의한 박강판 성형한계곡선의 변화 (Forming Limit Curves of Uniaxially or Biaxially Prestrained Steel)

  • 남재복;한수식;박기철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.156-163
    • /
    • 1998
  • During an actual forming operation, a material may undergo considrably large changes in strain path, and these changes can significantly alter the forming limits. So, in this study, modified forming limit curves(FLCs) in complex strain path are determined with specially designed jig to give test specimens with desired prestrains in uniaxial or biaxial deformation mode. In another part of present study, theoretical prediction of FLCs is attempted with MK's theory and Hosford's yield criterion to give forming limit curves in positive minor strain region and with Hill's local necking theory in negative minor strain region. Comparison of these theoretical results with experimental ones will be mentioned for both linear and complex strain path.

변형률계를 이용한 강재보의 건전도 평가 시스템 개발에 관한 연구 (A Study on Development of Structural Health Monitoring System for Steel Beams Using Strain Gauges)

  • 한현규;안형준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.99-109
    • /
    • 2012
  • 이 연구에서는 변형률계를 사용하여 변위를 추정하는 이론식을 제안 및 검증하고 하중 작용점과 크기를 추정하여 강재보의 건전도 평가 시스템을 개발하고자 하였다. 실험결과 160kN(항복하중의 56%)가력시 최대처짐 점에서 변형률계를 사용하여 얻는 처짐과 변위계의 측정처짐과의 오차율이 2%이내로 나타났으며 하중작용점 및 크기의 추정도 오차율1% 이내로 나타났다. 이를 통해 변형률계로 강재보의 변위 및 하중을 계측 할 수 있으며 나아가 변위계와 하중계의 생략으로 경제적인 센서설계를 할 수 있다. Lab VIEW로 구현된 건전도 평가 프로그램은 측정된 데이터가 일정 범위(강도 한계상태, 사용성 한계상태, 항복변형률)를 넘어설 때 단계별 경고를 발생하였고 변형률계 만으로 사용성한계상태와 강도한계상태를 동시에 모니터링 할 수 있었다.

축대칭 정수압 벌징의 유한요소 해석 (Finite Element Analysis of Axisymmetric Hydrostatic Bulging)

  • 백남주;강대민
    • 한국정밀공학회지
    • /
    • 제1권3호
    • /
    • pp.71-84
    • /
    • 1984
  • This paper examined strain distribution and radius of curvature of the bulge by finite element method and investigated limit polar thickness strain to predict the formability of sheet metal as we substituted effective strain and the radius of curvature obtained by FEM into instability condition equation successively. In experiment, the radius of curvature and limit polar thickness strainwere obtained by Moire method. Also, a concent- ric set of photogrid circles was used to measure the strain of arbitrary point and mild steel was used as material. This results obtained are as follows: 1) The radius of curvature obtained by FEM is in good agreement with the Moire experimental value. 2) The polar thickness strain is getting larger as the inside is approached from the edge. This means that fracture occurred near the ploe. 3) The circumferential strains agree closely with the meridian strains and the polar thickness strain is about twice the circumferential (or meridian) strain. This result agrees with the fact that anisotropy coefficient (R-value) obtained by tensile test is about one. 4) The theoretical results of limit polar thickness strain obtained by authors' method are better agreement with experimental results than other theoretical results. Therefore, we can better predict the formability of sheet metal with authors' method.

  • PDF

하이드로포밍 부품의 성형성 평가기준 적용 연구 (Study on Application of Forming Limit Criteria for Formability on Hydroforming Parts)

  • 허성찬;송우진;구태완;김정;강범수
    • 대한기계학회논문집A
    • /
    • 제31권8호
    • /
    • pp.833-838
    • /
    • 2007
  • In tube hydroforming process, several defective products could be obtained such as bursting, wrinkling, folding, buckling. Because, especially, bursting is most frequently occurred failure among the well known failures, it is mostly important to predict the onset of bursting failure on tube hydroforming process. For most sheet metal forming processes, strain based forming limit diagram(FLD) is used often as a criteria to estimate the possibility of onset of the failures proposed above. However, FLD has a shortcoming that it is dependent on strain path while stress based diagram is independent on strain history. Generally, tube hydroforming consists of three main processes such as pre-bending, pre-forming, and hydroforming and it means that the strain histories of final products are nonlinear. Therefore, forming limit stress diagram(FLSD) is more suitable to predict forming limit for hydroforming parts. In this study, FLSD is applied to estimate bursting failure for an engine cradle of an automobile part. Consequently, it is proved that application of FLSD to predict forming limit is available for tube hydroforming parts.

지오그리드의 한계 크리프 변형률 해석을 위한 제안 (Suggestion for Interpretation of Limit Creep Strain of Geogrids)

  • 전한용;목문성
    • 한국지반신소재학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2007
  • 크리프 시험결과 해석을 통하여 한계 크리프 변형률 개념에 의한 크리프 감소인자를 평가하는 새로운 절차를 소개하였다. 지오그리드의 한계 크리프 변형률을 결정하기 위하여, Sherby-Dorm Plots을 적용하였으며 그 결과를 각각 비교, 해석하였다. 이로부터 본 연구에 사용된 지오그리드 시료들의 크리프 감소인자는 1.45임을 알 수 있었다. 10% 임계 크리프 변형률에서의 크리프 감소인자 비교를 통하여 본 연구에 사용된 지오그리드 시료들의 크리프 감소인자의 감소폭은 약 0.06~0.14 범위임을 확인할 수 있었다.

  • PDF

고온 구조물의 한계응력강도 결정을 위한 크리프 일-시간 관계식의 유용성 (Usefulness of Creep Work-Time ]Relation for Determining Stress Intensity Limit of High-Temperature Components)

  • 김우곤;이경용;류우석
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.750-757
    • /
    • 2003
  • In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W$\_$c/t$\^$p/ = B(where W$\_$c/ = $\sigma$$\varepsilon$ is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this Purpose, the creep tests for generating 1.0% strain for commercial type i16 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593$^{\circ}C$. The plots of log W$\_$c/ - log t showed a good linear relation up to 10$\^$5/ hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of isochronous stress-strain curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials.

유리섬유 강화 열가소성 복합재료의 응력-변형률 관계 (The Stress-strain Relationship of Glass Fiber Reinforced Thermoplastic Composite)

  • 이중희
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.206-214
    • /
    • 1996
  • Because of the wide variety of the composite materials, inherent variability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Large strain behavior under uniaxial tension is characterized over a range of temperatures and strain rates, and a modified simple linear viscoelastic model is fit to the observed data. Of particular importance is the strain rate and temperature dependence of these composites, and it is the primary focus of this study. The strain rate and temperature dependence is then used to predict limiting tensile strains, based on Marciniak imperfection theory. Excellent correlation was obtained between model and experiment and the results are summarized in maps of forming limit as a function of strain rate and temperature.

  • PDF