• Title/Summary/Keyword: limit strain

Search Result 507, Processing Time 0.026 seconds

An Experimental Study on the Extinction Limit Extension of Unsteady Counterflow Diffusion Flames (비정상 대향류 확산 화염의 소화 한계 확장에 대한 실험적 연구)

  • Lee Uen Do;Lee Ki Ho;Oh Kwang Chul;Lee Eui Ju;Shin Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.390-401
    • /
    • 2005
  • In this study, extinction limit extension of unsteady $(CH_{4}+N_{2})$/air diffusion flames was investigated experimentally. A spatially locked flame in an opposing jet burner was perturbed by linear velocity variation, and time-dependent flame luminosity, transient maximum flame temperature and OH radical were measured over time with the high speed camera, Rayleigh scattering method and OH laser-induced fluorescence, respectively. Unsteady flames survive at strain rates that are much higher than the extinction limit of steady flames, and unsteady extinction limits extend as the slope of the strain rate increases or the initial strain rate decreases. We verified the validity of the equivalent strain rate concept by comparing the course of unsteady extinction process and steady extinction process, and it was found that the equivalent strain rate concept represents well the unsteady effect of a convective-diffusive zone. To investigate the reason of the unsteady extinction limit extension, we subtracted the time lag of the convective-diffusive zone by using the equivalent strain concept. Then the modified unsteady extinction limits become smaller than the original unsteady extinction limits, however, the modified unsteady extinction limits are still larger than the steady extinction limits. These results suggest that there exist the unsteady behavior of a diffusive-reactive zone near the extinction limit due to the chemical non-equilibrium states associated with unsteady flames.

Forming Limit Diagram of an Aluminum Tube Through Hydroforming Tests (액압성형 시험을 통한 알루미늄 튜브 재료의 성형한계도)

  • Kim J. S.;Lee J. K.;Park J. Y.;Lee D. J.;Kim H. Y.;Kim H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.514-519
    • /
    • 2005
  • A tube hydroformability testing system was designed and fabricated enabling to apply the forming condition along arbitrarily pre-programmed internal pressure-axial feed path. The free-bulging and T-forming tests were carried out on the extruded aluminum (A6063) tube specimens with 40.6 mm outer diameter and 2.25 mm thickness. Nine different combinations of internal pressure and axial feed, yielding different strain paths from one another, were taken into consideration in order to induce bursting at various deformation modes. Major and minor strains were automatically measured from deformed grids around the fracture using a stereo-vision-based surface strain measurement system, named ASIAS. The forming limit diagram of the A6063 tube material was successfully obtained. Most of the data points acquired from free bulging and T-forming tests appeared in the range of negative minor strain on the FLD and are mostly located near the strain paths calculated from explicit finite element simulations. The forming limit obtained from tests after pre-tension was considerably lower than that from tests without pre-tension, which showed the strain path-dependency of the forming limit as well known in the sheet forming fold.

Forming Limit Diagram Measurement of Tube for Tube Hydroforming Process (하이드로 포밍용 튜브의 성형 한계선도 측정)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.467-472
    • /
    • 2006
  • The forming limit diagram of tube is required for the part design and the formability analysis of tube hydroforming. The finite element analyses of simple bulge test were done to obtain the various strain combinations on FLC. The finite element analysis results were shown that the bursting at various strain combinations could be induced by simple bulge test. The experiment oi tube bulge test was carried out according to the test condition that obtained from finite element analysis and the left hand side of forming limit diagram was built.

Development of Plane Strain Punch Stretching Test (평면변형 장출실험기술의 개발)

  • 김영석;김기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1132-1137
    • /
    • 1993
  • A simple simulative test was developed to evaluate stamping formability in plane strain stretching mode. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test(PSST) compared to limit dome height(LDH) in hemispherical punch stretching test. PSST shows stable plane strain condition and good reproducibility with minimum scatter. Moreover LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance.

Analysis of Forming Limit for Circular Bonded Sheet Metals by Shear Band Formation (전단띠 형성에 의한 원형접합판의 변형한계 해석)

  • 정태훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.127-132
    • /
    • 2001
  • By the use of a similar numerical method as the forming limit strain by coating method of coated sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotohs Corner Theory) is utilized as the plasticity constitutive equa-tion. Circular bonded sheet metals with dissimilar sheets on both surface planes are stretched in a plane -strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such com-posite sheets are clearly illustrated. It is concluded that, it the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighed according thickness.

  • PDF

Numerical Investigation of Forming Limit of Clad Coated Sheet Metals (클래드코팅재의 성형성에 대한 수치적연구)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.340-345
    • /
    • 2003
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coating method of clad sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Clad two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the clad state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측)

  • Choi, S.C.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.172-175
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. To solve the nonlinear system of equations derived from the equilibrium and constraints in the groove region and the safe zone, the Newton-Raphson method is used. The theoretical FLDs using four different yield criteria, that are von Mises, Hill (1948), Hill (1979), Logan and Hosford, are compared with the experimental, numerical (FEA) and other theoretical results. A new trial is made where a modified M-K model having n-step grooves is introduced to describe a real localized neck.

  • PDF

Strain Path Dependence of Forming Limits Predicted by Barlat and Lians Non-Quadratic Anisotropic Yield riterion for Sheet Materials

  • Kim, Young-suk;Son, Hyun-sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.210-216
    • /
    • 2001
  • This paper presents an analytical study that can predict the path-dependent forming limit of anisotropic sheet materials that experience various combinations of strain paths. To predict the forming limit diagrams(FLD), the proposed analytical procedure is performed within the framework of the Marciniak and Kuczynski(M-K) approach by using the Barlat and Lians non-quadratic anisotropic yield criterion and introducing the effect of the existence of a strain gradient over a stretching punch. The predicted path-dependent forming limit of an anisotropic sheet has been compared with the published experimental results. It has been found that the predicted path-dependent forming limits are in good agreement with the experimental data.

  • PDF

Forming Limit Evaluation of Copper Alloy for Liquid Rocket Combustion Chamber (액체로켓 연소기용 구리합금의 성형한계성 평가)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.194-197
    • /
    • 2007
  • The dome stretching and tension test have been made to obtain a forming limit curve(FLC) for the copper alloy which is used for manufacturing the regenerative cooling chamber. For experimental survey of the forming limit curve, we have used in-plane tension specimen to obtain tension-compression strain state and also out of plane specimen to obtain tension-tension strain state through dome stretching test. All specimens are divided into longitudinal and radial direction specimens by the manufacturing method. The test results shows that in tension-tension region, copper alloy possesses a maximum major strain of 62.3% and maximum minor strain of 58.6%. In the tension-compression region, maximum major strain is 60.5% and maximum minor strain is 25.8%.

  • PDF

Forming Limit Curve Optimization using Design of Experiments (실험계획법을 이용한 성형한계곡선 최적화 연구)

  • Lim, H.T.;Lee, B.J.;Rhyim, Y.M.;Kim, B.K.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • Forming limit diagram is created by graphical illustration indicating major and minor strain. In order to provide the criterion for forming safety, FLC(forming limit curve) need to be fitted to the diagram. However, the standard method for the strain measurement and FLC plotting are not fixed yet, which results in inconvenience in digitalized analysis. In this study, new construction method for FLC was suggested in order to minimize operator dependency. For this purpose, major and minor strain were measured automatically and analyzed. Then, a second order equation is adopted to fit the FLC. Optimized by response surface method was performed to ensure particular characteristics of the FLC.

  • PDF