• Title/Summary/Keyword: limit set

Search Result 876, Processing Time 0.028 seconds

A Simulation Test of Load Rejection for Steam Turbine Generator in a 680MW Nuclear Power Plant (680MW 원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1605-1606
    • /
    • 2007
  • An electrical generator in power plant is driven and maintained its speed at rated by steam turbine. By the way, after synchronization in parallel with the power system, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip set point by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a field simulation test of generator load rejection to be implemented on the turbine governor in a 680MW nuclear power plant before its startup.

  • PDF

A Sequential Approximate Optimization Technique Using the Previous Response Values (응답량 재사용을 통한 순차 근사최적설계)

  • Hwang Tae-Kyung;Choi Eun-Ho;Lim O-Kaung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.45-52
    • /
    • 2005
  • A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

Analysis of Core Disruptive Accident Energetics for Liquid Metal Reactor

  • Suk, Soo-Dong;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.117-131
    • /
    • 2002
  • Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of the work to demonstrate the inherent and ultimate safety of conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 MWe pool- type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method and associated computer program, SCHAMBETA, was developed using a modified Bethe-Tait method to simulate the kinetics and thermodynamic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of the energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the SCHAMBETA code for various reactivity insertion rates up to 100 S/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies were also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

A Study on the necessity of smoke control system in the tunnel fire using fire simulation (화재시뮬레이션을 이용한 터널 내 화재시 제연설비 필요성 검토)

  • Ha, Ye-Jin;Jeon, Joon-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.241-242
    • /
    • 2022
  • In this study, fire simualtion was performed to examine the necessity of smoke control system in the tunnel fire. The heat release rate was set to 5 MW and 20MW, and the visibility was measured at 1.8 m, which is the breathing limit, when there is no jet fan. Through this, it was confirmed that 5 MW did not affect the visibility even without the jet fan, and in the case of 20 MW, a jet fan was required to secure the visibility. The visibility was measured at the same location by installing the jet fan, and the simulation was performed by reducing the design volume flow rate of 8.5 m3/s by 80% and 50%, respectively. As a result, it was confirmed that sufficient visibility was secured when the design flow rate and 80% were reduced.

  • PDF

A Study on Agricultural Machine Sharing Application

  • Min-jeong Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.464-469
    • /
    • 2023
  • The government has set the mechanization of paddy agriculture as a national task, aiming to achieve over 70% by 2025. The main objective is to stabilize the farming costs of rural households due to the aging and feminization of rural areas, as well as the shortage of agricultural labor. In response to this, the Korea Rural Economic Institute operates a farm machinery rental business. However, there are challenges in selecting and managing rental machinery, including issues related to labor, costs, verification, and time. Additionally, there is a limit to upgrades, and overseas models are being imported and used for transplanters and rice planters, which do not conform to domestic standards and face maintenance difficulties. In order to solve the difficulties of the agricultural machine rental business, we intend to develop an application that shares domestic and foreign machines purchased and used by individuals at a low cost and use them in gun-level administrative districts.

TOTALLY REAL AND COMPLEX SUBSPACES OF A RIGHT QUATERNIONIC VECTOR SPACE WITH A HERMITIAN FORM OF SIGNATURE (n, 1)

  • Sungwoon Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.547-564
    • /
    • 2024
  • We study totally real and complex subsets of a right quarternionic vector space of dimension n + 1 with a Hermitian form of signature (n, 1) and extend these notions to right quaternionic projective space. Then we give a necessary and sufficient condition for a subset of a right quaternionic projective space to be totally real or complex in terms of the quaternionic Hermitian triple product. As an application, we show that the limit set of a non-elementary quaternionic Kleinian group 𝚪 is totally real (resp. commutative) with respect to the quaternionic Hermitian triple product if and only if 𝚪 leaves a real (resp. complex) hyperbolic subspace invariant.

Consequence-based security for microreactors

  • Emile Gateau;Neil Todreas;Jacopo Buongiorno
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1108-1115
    • /
    • 2024
  • Assuring physical security for Micro Modular Reactors (MMRs) will be key to their licensing. Economic constraints however require changes in how the security objectives are achieved for MMRs. A promising new approach is the so-called performance based (PB) approach wherein the regulator formally sets general security objectives and leaves it to the licensee to set their own specific acceptance criteria to meet those objectives. To implement the PB approach for MMRs, one performs a consequence-based analysis (CBA) whose objective is to study hypothetical malicious attacks on the facility, assuming that intruders take control of the facility and perform any technically possible action within a limited time before an offsite security force can respond. The scenario leading to the most severe radiological consequences is selected and studied to estimate the limiting impact on public health. The CBA estimates the total amount of radionuclides that would be released to the atmosphere in this hypothetical scenario to determine the total radiation dose to which the public would be exposed. The predicted radiation exposure dose is then compared to the regulatory dose limit for the site. This paper describes application of the CBA to four different MMRs technologies.