• 제목/요약/키워드: limit dome height (LDH)

검색결과 8건 처리시간 0.029초

금속판재의 성형성 평가를 위한 실험 및 유한요소해석에 관한 고찰 (Some Remarks on the Experiment and Finite Element Analysis to Evaluate to Forming Limit of Sheet Metals)

  • 곽인구;신용승;김형종;김헌영
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.379-388
    • /
    • 2000
  • This study aims to examine the influence of experimental and numerical factors on the results of the test and finite element simulation to evaluate the formability of sheet metals. The stretch-forming test with a hemispherical punch is carried out to obtain the limiting dome height (LDH) and forming limit diagram (FLD) for several kinds of aluminium and steel sheet. The results of the LDH and FLD tests are analysed to find any correlation with the uniaxial tensile properties. It proves that the size of the prescribed grid has great influence on the measured value of strain. The finite element analysis of the punch stretching process is also carried out and the result is compared with the experimental data. The influence of the numerical parameters such as friction coefficient, element size and anisotropy model on the simulation results tms out to be very considerable.

  • PDF

평면변형장출실험을 이용한 스탬핑 성형성 평가 (A plane strain punch stretching test for evaluating stamping formability)

  • 김영석;남재복
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.121-129
    • /
    • 1993
  • Plane strain punch stretching test (PSST) was developed to evaluate stamping formability of sheet materials. In this test, the rectangular specimen of sheet material is uniformly stretched up to fracture by raising a specially designed punch to certainly assure plane strain stretching deformation along the longitudinal direction of the specimen. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test compared to limit dome height(LDH) in hemispherical punch stretching test. LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance. Moreover by using ultrasonic thickness gauge the plane strain intercept-limit plane strain(FLCo)-in forming limit curve can be accurately determined from thickness measurement around the fracture area. The FLCo derived from thickness measurement well correlates with the results from circle grid analysis for the deformed circle grid marked on the surface of the specimen.

  • PDF

금속판재의 성형한계 및 디프드로잉 성형성의 실험적 평가에 관한 연구 (A Study on the Experimental Evaluation of the Forming Limit and Deep-Drawability of Sheet Metals)

  • 임재규;이상호;김형종
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.67-74
    • /
    • 1999
  • The mechanical properties including forming limit and deep-drawability of commercially-used sheet metals were experimentally estimated in this study. Uniaxial tensile test to obtain basic mechanical properties was carried out, followed by limiting dome height (LDH) test and forming limit diagram (FLD) test to quantitatively evaluate the sheet-formability. Deep drawing and reverse drawing tests were also performed to find out the critical values of the blank holding force and the gap between the die and the blank holder which enabled the deep drawing and reverse drawing of a successful cop without any wrinkle or fracture. The thickness of the cup wall along the rolling-, transeverse- and $45^{\circ}$-directions was measured and compared with one another. And the punch force-stroke curve and the critical punch force expected from the theory coincided with the experimental result very well for mild steel while not for aluminium alloy.

  • PDF

금속 판재의 성형한계도 시험법에 관한 연구 (A Study on the Forming Limit Diagram Tests of Metal Sheets)

  • 장욱경;장윤주;김형종
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.49-57
    • /
    • 2010
  • A forming limit diagram (FLD) defines the extent to which specific sheet material can be deformed by drawing, stretching or any combination of those two. To determine the forming limit curve (FLC) accurately, it is necessary to perform the tests under well-organized conditions. In this study, the influence of several geometric or process parameters such as the blank shape and dimensions, strain measuring equipments, test termination time, forming speed and lubricants on the FLC is investigated.

  • PDF

AZ31 판재에서 소둔처리가 상온성형성에 미치는 영향 (Effect of Annealing Treatment on Cold Formability of AZ31 Sheets)

  • 황범규;이영선;문영훈;김대용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.395-398
    • /
    • 2009
  • The purpose of this paper is to investigate the effect of annealing treatment on cold formability of magnesium alloy sheet AZ31. The AZ31 sheets with three different thickness (1.0t, 1.6t, 2.0t) were annealed at three different temperatures ($345^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$). The mechanical properties and microstructure evolution of the annealed AZ31 were examined as well as limit dome height (LDH) and compared with those of as received one. The cold formability was enhanced but the strength was deteriorated by the annealing treatment.

  • PDF

알루미늄 판재 성형해석 시 파단 모델 적용 (Application of Failure Criteria in Aluminum Sheet Forming Analysis)

  • 김기정;;김대영;김헌영
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.167-172
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

알루미늄합금판재 성형한계 예측을 위한 파단모델 적용 (Application of Failure Criteria in Aluminum sheet Forming Analysis)

  • 이은국;김헌영;김형종;김흥규
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.207-207
    • /
    • 2011
  • The numerical simulation of the Forming Limit Diagram(FLD) test was carried out to calculate the limiting dome height(LDH: ISO12004-2) for aluminum alloy sheet Al6061-T6. The finite element analysis was used as an effective method for evaluating formability and diagnosing possible production problems in sheet stamping operations. To predict fracture during the stamping process, several failure models such as Cockcroft-Latham, Rice-Tracey, Brozzo and ESI-Wilkins-Kamoulakos(EWK) criteria were applied. The predicted results were discussed and compared with the experiments for Al6061-T6.

  • PDF