• Title/Summary/Keyword: limit bearing capacity

Search Result 111, Processing Time 0.027 seconds

Upper Bound Limit Analysis of Bearing Capacity for Surface Foundations on Sand Overlying Clay (점토층위의 모래지반에 위치한 얕은 기초의 지지력에 대한 상한 한계해석)

  • 김대현;야마모토켄타로
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.85-96
    • /
    • 2004
  • The ultimate bearing capacity of surface foundations on a sand layer overlying clay has been theoretically investigated. First, a review of previous studies on the bearing capacity problems for this type of foundation was performed and a discussion was presented concerning the practical application. Second, the kinematic approach of limit analysis was used to calculate the upper bound of the true ultimate bearing capacity. The kinematic solutions are upper bounds and their accuracy depends primarily on the nature of the assumed failure mechanism. This approach makes it convenient to create design charts, and it is possible to trace the influence of parameters. Third, the commercial finite element program ABAQUS was applied to obtain the ultimate bearing capacity based on the elasto-plastic theory. Results obtained from the kinematic approach were compared with those from the program ABAQUS and the limit equilibrium equations proposed by Yamaguchi, Meyerhof and Okamura et al. Finally, the validities of the results from the kinematic approach, the results from the program ABAQUS and the limit equilibrium equations were examined.

Computation of Ultimate Bearing Capacity of Eccentrically Loaded Footing By Upper Bound of Limit Analysis Method (극한해석 상계법을 이용한 편심하중하의 기초 지지력 산정)

  • Kwon, Oh Kyun;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.187-196
    • /
    • 1992
  • This paper estimates the bearing capacity of the eccentrically loaded footing by the upper bound of limit analysis method. Meyerhof method and Saran method used the limit equilibrium method in the estimation of bearing capacity. But, in this study the bearing capacity is estimated by the upper bound method. In applying the upper bound, the result depends on the failure mechanism. So this analysis uses the conventional failure mechanisms or the modified failure mechanisms. The comparisions are made between the results from this analysis and those obtained from the limit equilibrium method. Also, the influences of the parameters-eccentricity, internal friction angle, surcharge, G-value, and base friction of the footing on the bearing capacity factors have been examined.

  • PDF

The bearing capacity of square footings on a sand layer overlying clay

  • Uncuoglu, Erdal
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.287-311
    • /
    • 2015
  • The ultimate bearing capacity and failure mechanism of square footings resting on a sand layer over clay soil have been investigated numerically by performing a series of three-dimensional non-linear finite element analyses. The parameters investigated are the thickness of upper sand layer, strength of sand, undrained shear strength of lower clay and surcharge effect. The results obtained from finite element analyses were compared with those from previous design methods based on limit equilibrium approach. The results proved that the parameters investigated had considerable effect on the ultimate bearing capacity and failure mechanism occurring. It was also shown that the thickness of upper sand layer, the undrained shear strength of lower clay and the strength of sand are the most important parameters affecting the type of failure will occur. The value of the ultimate bearing capacity could be significantly different depending on the limit equilibrium method used.

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

A Study on Determination of Bearing Capacity of Eccentrically Loaded Strip Footing (편심하중을 받는 줄기초의 지지력 산정에 관한 연구)

  • Kwon, Oh Kyun;Chung, Choong-Ki;Kim, Tae Soo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.245-254
    • /
    • 1993
  • In this study, the influence of eccentricity on bearing capacity of strip footing has been investigated by the model tests using the carbon rods, the upper bound method of limit analysis, and Meyerhof method of the limit equilibrium method. In applying the upper bound, the failure mechanism based on model tests was used. There was good agreement between the result of model tests and the upper bound method of limit analysis, but Meyerhof method yielded low bearing capacity and underestimated the effect of eccentricity on bearing capacity. Besides, the influences of footing width, embedment depth and base friction on the bearing capacity have been examined.

  • PDF

Development of Prediction Method for Behavior of Reinforced Very Soft Clay (표층보강 초연약지반 거동의 예측 방법 개발)

  • Lee, Jong-Sun;Lee, Chul-Ho;You, Seung-Kyong;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.482-491
    • /
    • 2009
  • In this study, the mechanical behavior of very soft ground that is reinforced on the surface has been investigated with the aid of a series of numerical analyses. Key material properties of each dredged soft ground, reinforcement and backfill sand mat have been parametrically estimated in the numerical analysis. Along with the result of the study previously performed, a series of in-situ loading conditions and settlement exerted by surface reinforcing operation by construction vehicles has been numerically simulated. These result have been used to evaluate the limit bearing capacity for the unreinforced and reinforced soft ground. Also, the results of the numerical analysis obtained in this research were compared with Yamanouchi's empirical correlation for the limit bearing capacity. Engineering charts listed in this paper for estimating the limit bearing capacity provide field engineers with preliminary design tool for surface reinforcement of very soft ground.

  • PDF

The study on the bearing capacity and settlement of a foundation placed over a tunnel (Tunnel 상부지반의 기초 지지력과 침하에 관한 연구)

  • 김수삼;정승용;김용수;권태창
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.20-31
    • /
    • 1999
  • When a foundation on the ground with tunnel is constructed, the ultimate bearing capacity of a footing is reduced by tunnel. In practice, structure may bate a considerable damage because of large settlement. This study shows that the settlement which is caused by variety of the ultimated bearing capacity leads fatal damages to the footing above tunnel. Therefore, it is necessary to study on the reduction both of the ultimate bearing capacity which leads a failure and of tolerable settlement which satisfies the safety of the building. For this reason, the variety of ultimated bearing capacity was analyzed using tub-dimensional elasto-plastic finite difference method in this paper. As a result, bearing capacity of the foundation above tunnel should be determined after establishing limit of allowable settlement and considering reduction-ratio of bearing capacity.

  • PDF

A Study for the Development of Pile Design Method Considering Settlement and Compression (침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구)

  • Lim, Jong-Seok;Ha, Hyuk;Jung, Sang-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar;Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-138
    • /
    • 2022
  • Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.

Chord bearing capacity in long-span tubular trusses

  • Kozy, B.;Boyle, R.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.103-122
    • /
    • 2006
  • The capacity of tubular truss chords subjected to concentrated reaction forces in the vicinity of the open end (i.e., the bearing region) is not directly treated by existing design specifications; although capacity equations are promulgated for related tubular joint configurations. The lack of direct treatment of bearing capacity in existing design specifications seems to represent an unsatisfactory situation given the fact that connections very often control the design of long-span tubular structures comprised of members with slender cross-sections. The case of the simple-span overhead highway sign truss is studied, in which the bearing reaction is applied near the chord end. The present research is aimed at assessing the validity of adapting existing specifications' capacity equations from related cases so as to be applicable in determining design capacity in tubular truss bearing regions. These modified capacity equations are subsequently used in comparisons with full-scale experimental results obtained from testing carried out at the University of Pittsburgh.