• Title/Summary/Keyword: liming

Search Result 130, Processing Time 0.024 seconds

Development of several methods to remove Cadmium from soil contaminated with Cadmium (Cadmium 오염토양(汚染土壤)에서 Cadmium 제거방법(除去方法)의 개발(開發))

  • Choi, Jyung;Lee, Jyung-Jae;Hur, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.128-132
    • /
    • 1991
  • This study was carried out to find a method to remove cadmium from soil and/or attenuate in Cd saturated Soil The chemical form of Cd was influenced by the physico-chemical properties of soil and the adsorption of Cd by soil conformed to the Langmuir isotherm. The order of Cd contents in chemical fractions extracted by several reagents was EDTA > NaOH > $HNO_3$. Flooding, liming and the addition of chelating agents and clay minerals to the contaminated soil seems to desirable in alleviating the harmful effects of Cd on plant growth by reducing Cd content in the $KNO_3$ fraction.

  • PDF

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

Effects of the Application of Different Fertilizers on the Forage Productivity and Quality on Newly Reclaimed Hilly Soil III. Mutual balances of mineral nutrients in the soils & mixed forages, and the grass tetany hazard in a mixed grass-clover sward (신개간 산지토양에서 초지조성비 비종별 목초의 생산성 및 품질 비교 III. 토양 및 목초 중 무기양분의 상호균형과 Grass tetany 위험성)

  • 정연규;임요섭;조주식
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • This pot experiment was conducted to find out the forage productivity and quality in a grasslclover sward as affected by the application of three different fertilizers; double superphosphate(DS), fused Mg-phosphate (FP), and complex fertilizer(CF) on newly reclaimed hilly soil. This part was concerned with the mutual balances of mineral nutrients in the soils and mixed grass/clover sward in relation to grass tetany hazard. The results obtained are summarized as follows : 1. Concentration of exchangeable Mg and relative proportion of Mg to CEC in the soils before experiment were considerably below the critical level for good forage growth and prevention of grass tetany. It seems that these properties would be able to handicap by liming and NPK applications. 2. Comparing with the critical level for likelihood of tetany(Mg <0.2%, K >2.5%, and W(Ca+Mg) >2.2 in forages), mean concentration of Mg ranged from 0.14 in DS plot and 0.18 in FP plot to 0.24% in CF plot. Meanwhile, hazards of grass tetany in relation to the %K and ratio of K/(Ca+Mg) were not recognized. 3. Comparing with the optimum level of Carp(% ratio)=2.0 in forages for animal health, these ranged from 6.1 to 7.1. (Key words : Grass tetany, Fertilizer. Soil. Mineral nutrients)

  • PDF

Growth Rate and Biomass Productivity of Chlorella as Affected by Culture Depth and Cell Density in an Open Circular Photobioreactor

  • Liang, Fang;Wen, Xiaobin;Geng, Yahong;Ouyang, Zhengrong;Luo, Liming;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.539-544
    • /
    • 2013
  • The effects of culture depth (2-10 cm) and cell density on the growth rate and biomass productivity of Chlorella sp. XQ-200419 were investigated through the use of a self-designed open circular pond photobioreactor-imitation system. With increases in culture depths from 2 to 10 cm, the growth rate decreased significantly from 1.08 /d to 0.39 /d. However, the biomass productivity only increased slightly from 8.41 to 11.22 $g/m^2/d$. The biomass productivity (11.08 $g/m^2/d$) achieved in 4 cm culture with an initial $OD_{540}$ of 0.95 was similar to that achieved in 10 cm culture with an initial $OD_{540}$ of 0.5. In addition, the duration of maximal areal productivity at a 4 cm depth was prolonged from 1 to 4 days, a finding that was also similar to that of the culture at a 10 cm depth. In both cases, the initial areal biomass densities were identical. Based on these results and previous studies, it can be concluded that the influence of culture depth and cell density on areal biomass productivity is actually due to different areal biomass densities. Under suitable conditions, there are a range of optimal biomass densities, and areal biomass productivity reaches its maximum when the biomass density is within these optimal ranges. Otherwise, biomass productivity will decrease. Therefore, a key factor for high biomass productivity is to maintain an optimal biomass density.

Agricultural Methods for Toxicity Alleviation in Metal Contaminated Soils: A Review

  • Arunakumara, Kkiu;Walpola, Buddhi Charana;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Due to the fact that possible risk associated with soil-crop-food chain transfer, metal contamination in croplands has become a major topic of wide concern. Accumulation of toxic metals in edible parts of crops grown in contaminated soils has been reported from number of crops including rice, soybean, wheat, maize, and vegetables. Therefore, in order to ensure food safety, measures are needed to be taken in mitigating metal pollution and subsequent uptake by crop plants. Present paper critically reviewed some of the cost effective remediation techniques used in minimizing metal uptake by crops grown in contaminated soils. Liming with different materials such as limestone ($CaCO_3$), burnt lime (CaO), slaked lime [$Ca(OH)_2$], dolomite [$CaMg(CO_3)_2$], and slag ($CaSiO_3$) has been widely used because they could elevate soil pH rendering metals less-bioavailable for plant uptake. Zn fertilization, use of organic amendments, crop rotation and water management are among the other techniques successfully employed in reducing metal uptake by crop plants. However, irrespectively the mitigating measure used, heterogeneous accumulation of metals in different crop species is often reported. The inconsistency might be attributed to the genetic makeup of the crops for selective uptake, their morphological characteristics, position of edible parts on the plants in respect of their distance from roots, crop management practices, the season and to the soil characteristics. However, a sound conclusion in this regard can only be made when more scientific evidence is available on case-specific researches, in particular from long-term field trials which included risks and benefits analysis also for various remediation practices.

Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance

  • Qiu, Jin;Jiang, Liming;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.323-334
    • /
    • 2021
  • Concrete structures may rarely collapse in fire incidents but fire induced damage to structural members is inevitable as a result of material degradation and thermal expansion. This requires certain repairing measures to be applied to restore the performance of post-fire members. A brief review on investigation of post-fire damage of concrete material and concrete structural members is presented in this paper, followed by a review of post-fire repair research regarding various types of repairing techniques (FRP, steel plate, and concrete section enlargement) and different type of structural members including columns, beams, and slabs. Particularly, the fire scenarios adopted in these studies leading to damage are categorized as three levels according to the duration of gas-phase temperature above 600℃ (t600). The repair effectiveness in terms of recovered performance of concrete structural members compared to the initial undamaged performance has been summarized and compared regarding the repairing techniques and fire intensity levels. The complied results have shown that recovering the ultimate strength is achievable but the stiffness recovery is difficult. Moreover, the current fire loading scenarios adopted in the post-fire repair research are mostly idealized as constant heating rates or standard fire curves, which may have produced unrealistic fire damage patterns and the associated repairing techniques may be not practical. For future studies, the realistic fire impact and the system-level structural damage investigation are necessary.

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

Research on aging-related degradation of control rod drive system based on dynamic object-oriented Bayesian network and hidden Markov model

  • Kang Zhu;Xinwen Zhao;Liming Zhang;Hang Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4111-4124
    • /
    • 2022
  • The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.