• Title/Summary/Keyword: liming

Search Result 130, Processing Time 0.028 seconds

Basic Oxygen Furnace Slag as a Liming Agent for Paddy and Upland Field Soils (전로슬래그 시용의 토양개량 및 작물의 수량증대 효과)

  • 이충일
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • Basic oxygen furnace @OF) slag. a by-pradud of thc iron and steelmaking industry produced in largc quantities in Korea, poszs a subslantial disposal challenge. The BOF slag used in this study was if3 CaCO, in total n e u ~ ~ pnowger and application of 7-8 Mgha' was needed to bring soil pH to 6.5 horn pH 5.0-5.5 m silly clay or clay loam sod wnlained about 10% orgaoic matter. A field assay was conducted to shldg whether BOP slag could bc used as a dolomitic k i n g agent for agricullural soils. Four slag rates (0, 4, 8, 12 Mgha-')were investigated for their effcfect on soil pmperti~, mineral concentralions in leaf tissues of rice and soybean, and yield of the crops. Slag application at 8 Mgha-' rate in paddy field increased pH, Ca Mg, P, Si and Fe wntenl in sail and rice yield by 4.3-14.25 depending an the soil type. h upland field the 8 Mghaf ratc increa3ed pH, Ca and Fe wntent m soil and soybean yield by 36.6%. Thus, BOF slag appears to be a useful liming mate&\ulcornerl for corrzch~gs oil acidity on both paddy and upland ficld soils and for innwing Ca, Mg, P, Si, and Fe wncenhation in plants.

  • PDF

Effects of Eco-Friendly Organic Fertilizer on Growth and Yield of Angelica gigas Nakai (친환경 유기질 비료 시용이 참당귀의 생육과 수량에 미치는 영향)

  • Kim, Young Guk;An, Tae Jin;Yeo, Jun Hwan;Hur, Mok;Park, Young Shim;Cha, Seon Woo;Song, Beom Heon;Lee, Kyung A
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This experiment was carried out to investigate the effect of several organic compost on the growth and root yield of Angelica gigas Nakai with organic cultivation. After fertilizing the soil with organic fertilizer, the dry weight of liming fertilizer showed a slow change, while microorganism fertilizer decreased about 29% until 20 day after fertilizing. At 110 days after fertilizing, microorganism fertilizer decreased more than liming fertilizer. Liming fertilizer decomposed slowly, while microorganism fertilizer decomposed early on rapidly but gently after 20 days in decomposed rate of organic fertilizer. Dried root yields per 10a of A. gigas were not significance between 277.6kg in conventional fertilizer and 277.7kg, 280.5kg in N 1.5, N 2.0 times of microorganism fertilizer. Decursin and decursinol angelate contents in A. gigas were 9.08 ~ 9.07% from N 1.0 and N 1.5 times in liming fertilizer, and 7.94 ~ 8.12% from N 1.5 times and N 2.0 times in microorganism fertilizer, compared to 7.31% of conventional treatment.

The Effects of the Seed Inoculation, Pelleting, and Liming on the Nodulation and Growth of Lucerne(Medicago sativa L.) (황갈색 고원 토양에 있어 근류균 접종, pellleting 및 석회시용이 Lucerne(Medicago sativa L.)의 근류형성 및 생육에 미치는 영향)

  • 임병기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.79-83
    • /
    • 1971
  • To investigate the effects of seed treatments and liming on nodulation and growth of lucerne(Medicago sativa L.) in an upland yellow-brown earth in N.Z. the five levels of seed treatments(Uninoculated, Inoculated, Inoculated plus lime pelleted, Inoculated plus 50/50 phosphate/dolmite pelleted, Inoculated plus ta1c pelleted), and 2 levels of lime applications (0, 25kg/10a) were compared and their interactions were observed, and then the following results were obtained. 1. In oder to obtain the effective nodulation of lucerne on acid soil it is usually necessary to apply lime and inoculate the seed. 2. The coating of inoculated lucerne seed with adequate materials will promote the nodulation. 3. The pelleting of lucerne seed may be a of reducing the need for the heavy liming. 4. The finely grounded lime was the best to use origin upland yellow-brown earth. 5. When the seed were not inoculated or pelleted with inferior material, liming is very effective for the nodulation and growth of lucerne. 6. The pelleting seed will reduce the laborious work and expenditure.

  • PDF

Studies of Liming Effect on the Improvement of an Acid Sulphate Paddy Soil (특이산성답(特異酸性畓) 토양(土壤)의 개량(改良)을 위(爲)한 석회시용(石灰施用) 효과(?果)에 관(關)한 연구(硏究))

  • Park, Young-Sun
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.193-218
    • /
    • 1974
  • These studies were carried out for the elucidation of liming effect on the growth of rice seedlings and the chemical characteristics of an acid sulphate paddy that shows not only extremely high acidity of soil but also poor growth of rice plants, consequently low yield. Thus the liming effect on the changes of acidity, oxidation-reduction potential, and the contents of iron, aluminium, sulphate, and phosphorus fractions in the soil was investigated under the waterlogging and drying condition. The reclaimable or inhibitory effect of phosphorus, iron and aluminium on the growth of rice seedlings was also investigated under liming. The results are summarized as follows: 1. After liming, the pH of the acid sulphate subsoil decreased again on drying. 2. The oxidation-reduction potential reached a minimum after 5 days of flooding and greatly decreased on liming but increased after drying. 3. The contents of ferrous iron soluble in water-and Morgan's solution reached a maximum after 15 days of flooding and only the content of water soluble ferrous iron was greatly decreased. 4. The content of aluminium soluble in water-and Morgan's solution decreased by flooding and liming, and showed a tendency to increase on drying. 5. In the limed acid sulphate soil, the content of water soluble calcium showed a highly significant negative correlation with the content of sulphate and liming decreased sulphate content in the soil. 6. The contents of total phosphorus was 496.3 ppm in the acid sulphate topsoil and 387.5 ppm in the subsoil. The content of each phosphorus fraction was in the order of Fe-P>Occ. Fe-P>Ca-P>Occ. Al-P>Al-P and Fe-P content in the soil was the highest fraction among them. 7. Lime application increased greatly Ca-P and Al-P, and Occ. Fe-P and Occ. Al-P only slightly, but decreased Fe-P differently in each soil. 8. Effect of phosphorus on the dry matter yield of rice seedlings was great. The optimum amount of phosphorus to produce maximum dry matter yield of rice seedlings appeared to be 6.8% of maximum absorption (absorption coefficient) without liming and 10.0% with liming. 9. In rice seedlings liming increased the content and uptake of calcium and silica but decreased those of iron and aluminium. Phosphorus application increased the content and uptake of phosphorus and decreased iron while the application of iron and aluminium increased their contents and uptake but decreased those of phosphorus. 10. Liming greatly alleviated such toxicity of iron and aluminium. 11. When phosphorus was applied, the dry matter yield of rice seedlings showed highly significant positive correlations with uptake of phosphorus, calcium and silica each. When iron and aluminium were applied, dry matter yields indicated significant positive correlations with the contents or uptake of calcium and silica each, but significant negative correlations with the content or uptake of iron and aluminium. 12. Under the application of phosphorus and lime, dry matter yields showed significant positive correlations with pH and Morgan's extractable calcium each of the soil samples after harvest. Under the application of lime, iron and aluminium, dry matter yields showed significant positive correlations with pH, calcium and silica each, but negative correlations with iron and aluminium contents each of the soil samples after harvest.

  • PDF

Effect of Lime application on Yield and Chemical composition of Burley tobacco (Nicotiana tabacum L.) in pot experiment. (석회 시용이 Burley종 담배의 수량과 화학성분에 미치는 영향)

  • Kim, Yong-Ok;Choi, Jyung
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.10 no.2
    • /
    • pp.99-107
    • /
    • 1988
  • Pot experiment was conducted to find out the effect of lime application on yield and chemical composition of burley tobacco in 1986, Lime increased exchangeable calcium and pH of soil, but decreased Al, Fe and Mn concentrations. Yield was increased by lime application, however lime could not be caused to yield increasing in the soil with high calcium contents. Cored leaves of limed Plot contained higher Mg. K, total nitrogen, NO3-nitrogen, water soluble and insoluble ash, alkalinity number of water soluble and insoluble ash, citric and malic acid, but lower Fe, Mn, protein-nitrogen, NH3-nitrogen, nicotine petroleum ether extract, palmitic and linolenic acid concentrations than those of unlined plot. The linoleic acid and volatile neutral constituents of cured leaves were not affected by liming. Lime increased yield, however it did not affect leaf duality in respect to chemical characteristics, suggesting that liming should be necessary for tobacco cultivation.

  • PDF

Effect of pre-planting liming fertilization in peatmoss based substrates on plug seeding growth of 'Red Madness' petunia and changes in soil chemical properties (피트모스 혼합상토에 기비로 혼합된 석회질 비료가 'Red Madness' 페튜니아 플러그 묘 생장과 상토화학성에 미치는 영향)

  • Lee, Poong-Ok;Lee, Jong-Suk;Choi, Jong-Myung
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • This research was conducted to investigate the influence of application rate of liming fertilizers on changes in soil chemical properties and growth of 'Red Madness' petunia in plug production. To achieve this, dolomite (DO) with 0, 1.0, 3.5, 8.0 or 13.0 $g{\cdot}L^{-1}$ and calcium carbonate (CC) with 0, 2.0, 2.5, 3.0, 3.5, or 4.0 $g{\cdot}L^{-1}$ were incorporated into peatmoss + vermiculite (1:1, v/v) during the root substrates formulation. The treatments of 3.5 $g{\cdot}L^{-1}$ of DO and 2.5 or 3.0 $gL^{-1}$ of CC had acceptable ranges of pH and EC in soil solution such as 5.6~6.2 and 0.7~1.0 $dS{\cdot}m^{-1}$, respectively. The faster rising of pH was observed in root media containing CC rather than those of DO. This indicates that the solubility of CC is higher than DO. The soil Ca concentrations in all treatments of CC were 1.8 times as high as those of DO. The treatments of 3.5 or 8.0 $g{\cdot}L^{-1}$ of DO had the highest soil Mg concentrations, but all treatments of CC had lower soil Mg concentrations than control treatment indicating that additional application of Mg fertilizers are required. The elevated application rate of DO or CC resulted in the increase of fresh and dry weight. But plant heights were not influenced by application of liming fertilizers. The results of tissue analysis showed that application of DO or CC influenced the $PO_4{^-}P$, Ca and Mg contents, but not influenced the contents of other nutrients such as N, P, Fe, Mn, Zn and Cu.

Influence of Liming on Sr90 Uptake by Rice Plant (수도(水稻)의 Sr90 흡수(吸收)에 대한 석회시용(石灰施用) 효과(效果))

  • Kim, Jae-Sung;Lim, Soo-Kil;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.422-425
    • /
    • 1988
  • Pot experiment was conducted to determine the influence of liming on the uptake of $Sr^{90}$ by rice plant. The effect of lime application on the yield of rice plant has approved small slight increase of yield at the level of 150kg/10a only. Liming depressed the nutrient uptake of Mg, K, N and $P_2O_5$ except Ca by the rice plant. The $Sr^{90}$ content of rice plant diminished with increased lime application until to 300kg/10a. At the low pH and exchangeable Ca content of the soil, $Sr^{90}$ uptake of rice plant was high.

  • PDF

Chemical Forms and Release Potential of Heavy Metals from the Lime Treated Sediments (석회 처리에 의한 오염 퇴적물 내 중금속의 형태 변화 및 용출 가능성)

  • Park, Gil-Ok;Jun, Sang-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.166-173
    • /
    • 2008
  • Chemical forms and release potential of heavy metals were studied in the lime treated sediment of lake Chungcho. Chemical forms of heavy metals were analyzed using a sequential extraction method, and release potential of heavy metals was evaluated by the ratio of the content of labile forms to total metal one. Dominant form of Cd, Cu, Pb, and Zn in the untreated sediments was organic/sulfidic form that is stable in the reducing environment such as the bottom of Lake Chungcho. With liming of the sediment, the chemical forms of studied metals were greatly changed from organic/sulfidic form to adsorbed and reducible form, especially Cd and Cu to adsorbed and reducible form, but Pb and Zn to reducible form. It is believed that increase of unstable form of heavy metals in the sediments by liming was caused by the increase of pH of the pore water at the expense of organic/sulfidic form. Thus, we concluded that the liming approach currently used in the treatment of dredged sediments might cause the increase of labile form which is easily dissolved, and may increase the release of metals from the sediment into overlying water.

pH Buffer Capacity and Lime Requirement of Korean Acid Soils (한국산성토양의 pH 완충력과 석회소요량 특성)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Zhang, Yong-Sun;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.378-382
    • /
    • 2004
  • Soil pH is an important indicator for soil reactions and crop growth. pH buffer capacity and lime requirements are necessary to comprehend and manage soils well. The characteristics related with soil pH were analyzed and 5 field trials were conducted to elucidate pH buffer capacity of soil and lime requirements and liming factor for Korean acid soils. Soil minerals were analyzed for the soil of 2 years after treating $CaCO_3$ using X-ray diffraction. The amount of neutralized $H^+$ was regarded as the exchangeable aluminium overcoming ${\Delta}pH$, because pH buffer capacity of soil depended on exchangeable aluminium. Lime requirement was somewhat similar to the KCl exchangeable aluminium and it was also affected by the exchangeable cation by added lime. X-ray diffraction analyses revealed that an aluminium dissociation from Korean acid soils was equilibrated with kaolin minerals and changed into anorthite ($CaAl_2Si_2O_8$) by neutralizing with $CaCO_3$. Neutralizing process was composed of changing process of $Al^{3+}$ into $H^+$ and $Al(OH)_4{^-}$ ionic species and of neutralizing $H^+$ by, the amount of which was lime requirement. The fact that anorthite dissociates an aluminium ion higher than kaolinite does enabled to consider a liming factor (LF) the content of exchangeable cation and ${\Delta}pH$, $LF=1.5+0.2{\times}{\sum} Cations{\times}{\Delta}pH$.