• 제목/요약/키워드: likelihood ratio processes

검색결과 5건 처리시간 0.016초

제1형 우측중도절단된 로그정규 수명 자료를 모니터링하는 누적합 관리도 (CUSUM charts for monitoring type I right-censored lognormal lifetime data)

  • 최민재;이재헌
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.735-744
    • /
    • 2021
  • 제품의 수명을 유지시키는 것은 품질관리의 주요 목표 중 하나이다. 실제 공정에서는 시간 및 비용의 문제로 인해 모든 표본의 수명을 측정할 수 없는 경우가 많이 발생하기 때문에, 대부분 중도절단된 자료를 포함시켜 표본을 구성한다. 이 논문에서는 제1형의 우측중도절단된 수명 자료가 로그정규분포를 따르는 경우, 제품 수명의 평균을 모니터링하는 두 가지 누적합 관리도 절차를 제안한다. 하나는 우도비에 기초한 누적합 관리도이고, 다른 하나는 이항분포에 기초한 누적합 관리도 절차이다. 모의실험을 통해 평균런길이를 비교하는 방법으로 제안된 두 관리도 절차의 성능을 비교하였다. 모의실험 결과, 중도절단율이 낮은 경우, 형상모수값이 작은 경우, 평균의 감소 변화량이 큰 경우에는 우도비 누적합 관리도가 더 효율적이며, 반대로 중도절단율이 높은 경우, 형상모수값이 큰 경우, 평균의 감소 변화량이 적은 경우에는 이항 누적합 관리도가 더 효율적인 것으로 나타났다.

이변량 영과잉-포아송모형에서 변화시점에 관한 추론 (Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권2호
    • /
    • pp.319-327
    • /
    • 1999
  • 영과잉-포아송분포는 여러 형태의 불량률을 줄이는 생산공정과정에서 유용하게 이용되어 왔다. 또한 생산공정과정 중 미지의 변화시점 이후 불량률의 변화가 있는지를 알아보는 것은 흥미 있는 일이고 연구된바있다. 만약 불량품들이 서로 두가지 다른 형태의 규격에 의해 발생되었다면, 이는 일변량이 아닌 이변량 영과잉-포아송 분포를 이용해야 할 것이다. 본 논문은 이변량 영과잉-포아송모형에서 어느 미지의 시점 이후 분포의 변화가 있는지를 우도비 검정을 통해 알아본다. 또한 변화가 있다면 변화시점과 그리고 여러 형태의 모수들에 대한 점추정량을 알아보려 한다.

  • PDF

Variance Gamma 과정을 이용한 옵션 가격의 결정 연구 (A Study of Option Pricing Using Variance Gamma Process)

  • 이현의;송성주
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.55-66
    • /
    • 2012
  • 블랙-숄즈 모형이 실제 기초자산의 움직임을 반영하지 못한다는 사실이 실증연구에 의하여 밝혀진 이후 기초자산의 움직임을 레비확률과정을 이용하여 모형화한 옵션가격결정 모형들이 그 대안 중 하나로 연구되어 왔다. 본 논문에서는 블랙-숄즈 모형의 대안으로 제시된 레비모형 중 Variance Gamma 모형이 국내 주식시장에서의 기초자산의 움직임을 블랙-숄즈 모형보다 충실히 재현해내는지 알아보고자 한다. 이를 위하여 Madan 등 (1998)의 연구에서와 같이 로그수익률의 확률밀도함수와 옵션 가격 결정식을 바탕으로 KOSPI 200자료를 이용하여 모수를 추정하고 우도비 검정을 실시하였다. 또한, 옵션 가격을 추정한 후 모형 간의 비교를 위하여 다양한 통계량을 계산하고, 회귀분석을 통하여 변동성 스마일 현상이 교정되는지를 살펴보았다. 연구결과로부터 Variance Gamma 모형 하에서 추정된 옵션 가격이 블랙-숄즈 모형 하에서 추정된 그것보다 더 시장가격과 가까우나, 이 모형도 변동성 스마일 현상을 해결해주지는 못함을 확인할 수 있었다.

센서드리프트 판별을 위한 통계적 탐지기술 고찰 (Statistical Techniques to Detect Sensor Drifts)

  • 서인용;신호철;박문규;김성준
    • 한국시뮬레이션학회논문지
    • /
    • 제18권3호
    • /
    • pp.103-112
    • /
    • 2009
  • 원자력발전소에서 센서의 주기적 교정은 안전운전을 위해 꼭 필요하다. 그러나 실제 드리프트가 발생하여 교정을 요하는 센서는 약 2% 미만이다. 또한, 센서의 작동 상태를 매 핵연료 주기마다 수행하는 것은 고장 혹은 드리프트가 발생한 센서를 최대 18개월까지 감지하지 못한 채 운전할 위험이 있다. 원전의 안전운전 및 불필요한 교정을 줄이기 위해 센서의 상시 교정 감시가 필요하다. 이를 위해 주성분 분석과 Support Vector Regression(SVR)을 이용한 PCSVR 알고리즘을 개발하였고, 고리원전 3호기의 출력증발 데이터를 이용하여 검증하였다. 주성분분석은 선형변환을 통한 입력공간의 축소 및 노이즈 제거 효과를 나타내며, AASVR은 해석학적 및 기계학적 모델로 모델링하기 힘든 복잡계를 쉽게 나타낼 수 있는 장점이 있다. SVR의 세가지 파라미터는 반응표면분석법에 의해 최적화하였다. 센서의 고장탐지를 위해 모델 출력의 잔차를 슈하르트 관리도, EWMA, CUSUM 및 일반화우도비검정(GLRT)을 통해 그 결과를 비교하였다. 미세한 드리프트에 대해 CUSUM과 GLRT가 우수한 결과를 보였다. 개발된 알고리즘은 수출형 원전 APR1000 설계시 적용가능 할 것으로 판단된다.