• 제목/요약/키워드: lignin-derived aromatic compounds

검색결과 2건 처리시간 0.015초

Catabolic Pathway of Lignin Derived-Aromatic Compounds by Whole Cell of Phanerochaete chrysosporium (ATCC 20696) With Reducing Agent

  • Hong, Chang-Young;Kim, Seon-Hong;Park, Se-Yeong;Choi, June-Ho;Cho, Seong-Min;Kim, Myungkil;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권2호
    • /
    • pp.168-181
    • /
    • 2017
  • Whole cell of Phanerochaete chrysosporium with reducing agent was applied to verify the degradation mechanism of aromatic compounds derived from lignin precisely. Unlike the free-reducing agent experiment, various degraded products of aromatic compounds were detected under the fungal treatment. Our results suggested that demethoxylation, $C_{\alpha}$ oxidation and ring cleavage of aromatic compounds occurred under the catabolic system of P. chrysosporium. After that, degraded products stimulated the primary metabolism of fungus, so succinic acid was ultimately main degradation product of lignin derived-aromatic compounds. Especially, hydroquinone was detected as final intermediate in the degradation of aromatics and production of succinic acid. In conclusions, P. chrysosporium has an unique catabolic metabolism related to the production of succinic acid from lignin derived-aromatic compounds, which was meaningful in terms of lignin valorization.

Structural Analysis of Open-Column Fractionation of Peracetic Acid-Treated Kraft Lignin

  • PARK, Se-Yeong;CHOI, June-Ho;CHO, Seong-Min;CHOI, Joon Weon;CHOI, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.769-779
    • /
    • 2020
  • This study investigates the selective fractionation of lignin with uniform structures and lower molecular weight. Lignin solubilization was first performed using a solution of acetic acid (AA) and hydrogen peroxide (HP) (4:1, (v/v)) to form peracetic acid (PAA), which is a strong oxidant. After the PAA-induced solubilization that occurred at 80℃, totally soluble lignin was extracted by ethyl acetate (EA) and divided into organic- and water-soluble fractions. The EA fraction was then fractionated by open-column using three solutions (chloroform-ethyl acetate, methanol, and water) sequentially. With an increase in the solvent polarity during the fractionation step, the molecular weight of the lignin-derived compounds in the fraction increased. Remarkably, some lignin fractions did not have aromatic structures. These fractions were identified as carboxylic acid-containing polymers like poly-carboxylates. These results conclude that the selective production of lignin-derived polymers with specific molecular weight and structural characteristics could be possible through open-column fractionation.