• Title/Summary/Keyword: lightweight network

Search Result 285, Processing Time 0.025 seconds

Design of Lightweight Mobile Middleware Naive System (경량 모바일 미들웨어 원시 시스템 설계)

  • Yang, Seung-Il;Lee, Tae-Gyu;Park, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.41-50
    • /
    • 2009
  • A conventional middleware system is optimized for wired computing environments. The wireless mobile devices have several disadvantages of low-speed processors, small memory and narrow bandwidth of wireless network. To overcome those problem issues in wireless mobile environments, middleware and many middleware-related applications have to be changed of the small sized components. In this paper, we design a lightweight mobile middleware system called "LightMware" which is optimized for mobile environment and middleware applications

Lightweight image classifier for CIFAR-10

  • Sharma, Akshay Kumar;Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.286-289
    • /
    • 2021
  • Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.

Lightweight Residual Layer Based Convolutional Neural Networks for Traffic Sign Recognition (교통 신호 인식을 위한 경량 잔류층 기반 컨볼루션 신경망)

  • Shokhrukh, Kodirov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.105-110
    • /
    • 2022
  • Traffic sign recognition plays an important role in solving traffic-related problems. Traffic sign recognition and classification systems are key components for traffic safety, traffic monitoring, autonomous driving services, and autonomous vehicles. A lightweight model, applicable to portable devices, is an essential aspect of the design agenda. We suggest a lightweight convolutional neural network model with residual blocks for traffic sign recognition systems. The proposed model shows very competitive results on publicly available benchmark data.

A Lightweight Software-Defined Routing Scheme for 5G URLLC in Bottleneck Networks

  • Math, Sa;Tam, Prohim;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • Machine learning (ML) algorithms have been intended to seamlessly collaborate for enabling intelligent networking in terms of massive service differentiation, prediction, and provides high-accuracy recommendation systems. Mobile edge computing (MEC) servers are located close to the edge networks to overcome the responsibility for massive requests from user devices and perform local service offloading. Moreover, there are required lightweight methods for handling real-time Internet of Things (IoT) communication perspectives, especially for ultra-reliable low-latency communication (URLLC) and optimal resource utilization. To overcome the abovementioned issues, this paper proposed an intelligent scheme for traffic steering based on the integration of MEC and lightweight ML, namely support vector machine (SVM) for effectively routing for lightweight and resource constraint networks. The scheme provides dynamic resource handling for the real-time IoT user systems based on the awareness of obvious network statues. The system evaluations were conducted by utillizing computer software simulations, and the proposed approach is remarkably outperformed the conventional schemes in terms of significant QoS metrics, including communication latency, reliability, and communication throughput.

Abnormal Electrocardiogram Signal Detection Based on the BiLSTM Network

  • Asif, Husnain;Choe, Tae-Young
    • International Journal of Contents
    • /
    • v.18 no.2
    • /
    • pp.68-80
    • /
    • 2022
  • The health of the human heart is commonly measured using ECG (Electrocardiography) signals. To identify any anomaly in the human heart, the time-sequence of ECG signals is examined manually by a cardiologist or cardiac electrophysiologist. Lightweight anomaly detection on ECG signals in an embedded system is expected to be popular in the near future, because of the increasing number of heart disease symptoms. Some previous research uses deep learning networks such as LSTM and BiLSTM to detect anomaly signals without any handcrafted feature. Unfortunately, lightweight LSTMs show low precision and heavy LSTMs require heavy computing powers and volumes of labeled dataset for symptom classification. This paper proposes an ECG anomaly detection system based on two level BiLSTM for acceptable precision with lightweight networks, which is lightweight and usable at home. Also, this paper presents a new threshold technique which considers statistics of the current ECG pattern. This paper's proposed model with BiLSTM detects ECG signal anomaly in 0.467 ~ 1.0 F1 score, compared to 0.426 ~ 0.978 F1 score of the similar model with LSTM except one highly noisy dataset.

Related-key Neural Distinguisher on Block Ciphers SPECK-32/64, HIGHT and GOST

  • Erzhena Tcydenova;Byoungjin Seok;Changhoon Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.

  • PDF

FGW-FER: Lightweight Facial Expression Recognition with Attention

  • Huy-Hoang Dinh;Hong-Quan Do;Trung-Tung Doan;Cuong Le;Ngo Xuan Bach;Tu Minh Phuong;Viet-Vu Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2505-2528
    • /
    • 2023
  • The field of facial expression recognition (FER) has been actively researched to improve human-computer interaction. In recent years, deep learning techniques have gained popularity for addressing FER, with numerous studies proposing end-to-end frameworks that stack or widen significant convolutional neural network layers. While this has led to improved performance, it has also resulted in larger model sizes and longer inference times. To overcome this challenge, our work introduces a novel lightweight model architecture. The architecture incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and Attention Modules. By doing so, we aim to strike a balance between model size, inference speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark FER datasets, our proposed method has demonstrated promising results. Notably, it stands out due to its substantial reduction in parameter count and faster inference time, while maintaining accuracy levels comparable to other lightweight models discussed in the existing literature.

Designing of Network based Tiny Ubiquitous Networked Systems (네트워크 기반의 소형 유비쿼터스 시스템의 개발)

  • Hwang, Kwang-Il;Eom, Doo-Seop
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.3
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper, we present a network-oriented lightweight real-time system, which is composed of an event-driven operating system called the Embedded Lightweight Operating System (ELOS) and a generic multi hop ad hoc routing protocol suite. In the ELOS, a conditional preemptive FCFS scheduling method with a guaranteed time slot is designed for efficient real-time processing. For more elaborate configurations, we reinforce fault tolerance by supplementing semi-auto configuration using wireless agent nodes. The developed hardware platform is also introduced, which is a scalable prototype constructed using off-the-shelf components. In addition, in order to evaluate the performance of the proposed system, we developed a ubiquitous network test-bed on which several experiments with respect to various environments are conducted. The results show that the ELOS is considerably favorable for tiny ubiquitous networked systems with real-time constraints.

Lightweight Multicast Routing Based on Stable Core for MANETs

  • Al-Hemyari, Abdulmalek;Ismail, Mahamod;Hassan, Rosilah;Saeed, Sabri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4411-4431
    • /
    • 2014
  • Mobile ad hoc networks (MANETs) have recently gained increased interest due to the widespread use of smart mobile devices. Group communication applications, serving for better cooperation between subsets of business members, become more significant in the context of MANETs. Multicast routing mechanisms are very useful communication techniques for such group-oriented applications. This paper deals with multicast routing problems in terms of stability and scalability, using the concept of stable core. We propose LMRSC (Lightweight Multicast Routing Based on Stable Core), a lightweight multicast routing technique for MANETs, in order to avoid periodic flooding of the source messages throughout the network, and to increase the duration of multicast routes. LMRSC establishes and maintains mesh architecture for each multicast group member by dividing the network into several zones, where each zone elects the most stable node as its core. Node residual energy and node velocity are used to calculate the node stability factor. The proposed algorithm is simulated by using NS-2 simulation, and is compared with other multicast routing mechanisms: ODMRP and PUMA. Packet delivery ratio, multicast route lifetime, and control packet overhead are used as performance metrics. These metrics are measured by gradual increase of the node mobility, the number of sources, the group size and the number of groups. The simulation performance results indicate that the proposed algorithm outperforms other mechanisms in terms of routes stability and network density.

Predictive System for Unconfined Compressive Strength of Lightweight Treated Soil(LTS) using Deep Learning (딥러닝을 이용한 경량혼합토의 일축압축강도 예측 시스템)

  • Park, Bohyun;Kim, Dookie;Park, Dae-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.18-25
    • /
    • 2020
  • The unconfined compressive strength of lightweight treated soils strongly depends on mixing ratio. To characterize the relation between various LTS components and the unconfined compressive strength of LTS, extensive studies have been conducted, proposing normalized factor using regression models based on their experimental results. However, these results obtained from laboratory experiments do not expect consistent prediction accuracy due to complicated relation between materials and mix proportions. In this study, deep neural network model(Deep-LTS), which was based on experimental test results performed on various mixing conditions, was applied to predict the unconfined compressive strength. It was found that the unconfined compressive strength LTS at a given mixing ratio could be resonable estimated using proposed Deep-LTS.