• Title/Summary/Keyword: lightweight network

Search Result 285, Processing Time 0.029 seconds

A Fast and Secure Method to Preserve Anonymity in Electronic Voting (전자투표에서 익명성 보장을 위한 빠르고 안전한 방식)

  • Yang, Hyung-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.245-251
    • /
    • 2014
  • Mix network plays a key role in electronic voting to preserve anonymity and lots of mixnet schemes have been proposed so far. However, they requires complex and costly zero-knowledge proofs to provide their correct mixing operations. In 2010, Seb$\acute{e}$ et al. proposed an efficient and lightweight mixnet scheme based on a cryptographic secure hash function instead of zero-knowledge proofs. In this paper, we present a more efficient and faster mixnet scheme than Seb$\acute{e}$ et al.'s scheme under the same assumption. Also, our scheme is secure.

Differential Fault Analysis on Lightweight Block Cipher LBlock (경량 블록 암호 LBlock에 대한 차분 오류 공격)

  • Jeong, Ki-Tae;Lee, Chang-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.871-878
    • /
    • 2012
  • LBlock is a 64-bit ultra-light block cipher suitable for the constrained environments such as wireless sensor network environments. In this paper, we propose a differential fault analysis on LBlock. Based on a random nibble fault model, our attack can recover the secret key of LBlock by using the exhaustive search of $2^{25}$ and five random nibble fault injection on average. It can be simulated on a general PC within a few seconds. This result is superior to known differential fault analytic result on LBlock.

Lightweight IP Traceback Mechanism (경량화된 IP 역추적 메커니즘)

  • Heo, Joon;Hong, Choong-Seon;Lee, Ho-Jae
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.17-26
    • /
    • 2007
  • A serious problem to fight attacks through network is that attackers use incorrect or spoofed IP addresses in attack packets. Due to the stateless nature of the internet structure, it is a difficult problem to determine the source of these spoofed IP packets. While many IP traceback techniques have been proposed, they all have shortcomings that limit their usability in practice. In this paper we propose new IP marking techniques to solve the IP traceback problem. We have measured the performance of this mechanism and at the same time meeting the efficient marking for traceback and low system overhead.

Springback Compensation of Sheet Metal Bending Process Based on DOE & ANN (판재 굽힘 성형에서 실험계획법 및 인공신경망을 이용한 탄성회복 보정)

  • An, Jae-Hong;Ko, Dae-Cheol;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.990-996
    • /
    • 2008
  • Nowadays, the trend to a lightweight design accelerates the use of advanced high strength steel (AHSS) in automotive industry. Springback phenomena is a hot issue in the sheet metal forming, especially bending process using AHSS. Several analytical methods for that have been proposed in recent years. Each of method has their advantages and disadvantages. There are only a few optimal solutions which can minimize the two objectives simultaneously. In this study, an effective method optimized the multi objective value. The method by the design of experiments(DOE) and artificial neural network(ANN) was presented to compensate springback of bending parts. This method was applied to L and V bending process. The effective method could be optimized to multiple object. It was confirmed that the proposed method was more efficient than traditional manual FEA procedure and the trial and error approach for springback compensation.

Development of Master-slave System for Robot-assisted Remote Ultrasound Diagnosis (로봇 지원 원격 초음파 영상진단을 위한 마스터-슬레이브 시스템의 개발)

  • Seo, Joonho;Cho, Jang Ho;Kwon, Ohwon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • In this paper, we introduce a robot-assisted medical diagnostic system that enables remote ultrasound (US) imaging to be applied to the conventional telemedicine, which has been possible only with interviewing or a visual exam. In particular, a master-slave robot system is developed that ultrasonic diagnosis specialist can control the position and orientation of US probe in the remote place. The slave robot is designed to be compact, lightweight, and hand-held so that it can easily transfer to the remote healthcare center. Moreover, 6-degree-of-freedom (DOF) probe motion is possible by the robot design based on Stewart platform. The master device is also based on a similar structure of the slave robot. To connect master and slave system in the wide area network (WAN) environment, a hardware CODEC was developed. In this paper, we introduce the detail of each component and the results of the recent experiments conducted in the remote sites by the developed robotic ultrasound imaging system.

Robust Conditional Privacy-Preserving Authentication based on Pseudonym Root with Cuckoo Filter in Vehicular Ad Hoc Networks

  • Alazzawi, Murtadha A.;Lu, Hongwei;Yassin, Ali A.;Chen, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6121-6144
    • /
    • 2019
  • Numerous privacy-preserving authentication schemes have been proposed but vehicular ad hoc networks (VANETs) still suffer from security and privacy issues as well as computation and communication overheads. In this paper, we proposed a robust conditional privacy-preserving authentication scheme based on pseudonym root with cuckoo filter to meet security and privacy requirements and reduce computation and communication overheads. In our proposed scheme, we used a new idea to generate pseudonyms for vehicles where each on-board unit (OBU) saves one pseudonym, named as "pseudonym root," and generates all pseudonyms from the same pseudonym. Therefore, OBU does not need to enlarge its storage. In addition, the scheme does not use bilinear pairing operation that causes computation overhead and has no certification revocation list that leads to computation and communication overheads. The proposed scheme has lightweight mutual authentication among all parties and just for once. Moreover, it provides strong anonymity to preserve privacy and resists ordinary attacks. We analyzed our proposed scheme and showed that it meets security and privacy requirements of VANETs and is more efficient than traditional schemes. The communication and computation overheads were also discussed to show the cost-effectiveness of the proposed scheme.

Improved Meet-in-the-Middle Attacks on Crypton and mCrypton

  • Cui, Jingyi;Guo, Jiansheng;Huang, Yanyan;Liu, Yipeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2660-2679
    • /
    • 2017
  • Crypton is a SP-network block cipher that attracts much attention because of its excellent performance on hardware. Based on Crypton, mCrypton is designed as a lightweight block cipher suitable for Internet of Things (IoT) and Radio Frequency Identification (RFID). The security of Crypton and mCrypton under meet-in-the-middle attack is analyzed in this paper. By analyzing the differential properties of cell permutation, several differential characteristics are introduced to construct generalized ${\delta}-sets$. With the usage of a generalized ${\delta}-set$ and differential enumeration technique, a 6-round meet-in-the-middle distinguisher is proposed to give the first meet-in-the-middle attack on 9-round Crypton-192 and some improvements on the cryptanalysis of 10-round Crypton-256 are given. Combined with the properties of nibble permutation and substitution, an improved meet-in-the-middle attack on 8-round mCrypton is proposed and the first complete attack on 9-round mCrypton-96 is proposed.

An Efficient MIPv4 Registration Protocol With Minimal Overheads Of AAA (AAA 오버헤드를 최소화한 효율적인 MIPv4 등록 프로토롤)

  • Kang Hyun-Sun;Park Chang-Seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.3
    • /
    • pp.43-52
    • /
    • 2005
  • MIPv4 supports node mobility, manages MN's binding list and provides seamless communication through registration protocol. Since the registration protocol usually operating in the wireless environment involves authenticating MNs, it is a general approach to introduce the AAA infrastructure as key distribution center for the purpose of authentication. In this paper, we propose an efficient registration protocol with lightweight AAA based on domain key. Proposed protocol also withstands various replay attacks, and provides non-repudiation service for the accounts of the usage of the network service.

UDP-Based Active Scan for IoT Security (UAIS)

  • Jung, Hyun-Chul;Jo, Hyun-geun;Lee, Heejo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.20-34
    • /
    • 2021
  • Today, IoT devices are flooding, and traffic is increasing rapidly. The Internet of Things creates a variety of added value through connections between devices, while many devices are easily targeted by attackers due to security vulnerabilities. In the IoT environment, security diagnosis has problems such as having to provide different solutions for different types of devices in network situations where various types of devices are interlocked, personal leakage of security solutions themselves, and high cost, etc. To avoid such problems, a TCP-based active scan was presented. However, the TCP-based active scan has limitations that it is difficult to be applied to real-time systems due to long detection times. To complement this, this study uses UDP-based approaches. Specifically, a lightweight active scan algorithm that effectively identifies devices using UPnP protocols (SSDP, MDNS, and MBNS) that are most commonly used by manufacturers is proposed. The experimental results of this study have shown that devices can be distinguished by more than twice the true positive and recall at an average time of 1524 times faster than Nmap, which has a firm position in the field.

Optimizing 2-stage Tiling-based Matrix Multiplication in FPGA-based Neural Network Accelerator (FPGA기반 뉴럴네트워크 가속기에서 2차 타일링 기반 행렬 곱셈 최적화)

  • Jinse, Kwon;Jemin, Lee;Yongin, Kwon;Jeman, Park;Misun, Yu;Taeho, Kim;Hyungshin, Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • The acceleration of neural networks has become an important topic in the field of computer vision. An accelerator is absolutely necessary for accelerating the lightweight model. Most accelerator-supported operators focused on direct convolution operations. If the accelerator does not provide GEMM operation, it is mostly replaced by CPU operation. In this paper, we proposed an optimization technique for 2-stage tiling-based GEMM routines on VTA. We improved performance of the matrix multiplication routine by maximizing the reusability of the input matrix and optimizing the operation pipelining. In addition, we applied the proposed technique to the DarkNet framework to check the performance improvement of the matrix multiplication routine. The proposed GEMM method showed a performance improvement of more than 2.4 times compared to the non-optimized GEMM method. The inference performance of our DarkNet framework has also improved by at least 2.3 times.