Recently with increase of data in the Internet, platform technologies that can process huge data effectively such as Google platform and Hadoop are regarded as worthy of notice. In this kind of platform, there exist network I/O overheads to send task outputs due to the MapReduce operation which is a programming model to support parallel computation in the large cluster system. In this paper, we suggest applying of TIPC (Transparent Inter-Process Communication) protocol for reducing network I/O overheads and increasing network performance in the distributed computing environments. TIPC has a lightweight protocol stack and it spends relatively less CPU time than TCP because of its simple connection establishment and logical addressing. In this paper, we analyze main features of the Hadoop-based distributed computing system, and we build an experimental model which can be used for experiments to compare the performance of various protocols. In the experimental result, TIPC has a higher bandwidth and lower CPU overheads than other protocols.
Park, Jun-Sang;Kim, Sung-Yun;Park, Dai-Hee;Choi, Mi-Jung;Kim, Myung-Sup
The KIPS Transactions:PartC
/
v.16C
no.1
/
pp.13-20
/
2009
Recently, as traffic flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems (IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network traffic. In this paper we propose an SNMP-based lightweight and fast detection algorithm for traffic flooding attacks, which minimizes the processing and network overhead of the detection system, minimizes the detection time, and provides high detection rate. The attack detection algorithm consists of three consecutive stages. The first stage determines the detection timing using the update interval of SNMP MIB. The second stage analyzes attack symptoms based on correlations of MIB data. The third stage determines whether an attack occurs or not and figure out the attack type in case of attack.
This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.
Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.7
/
pp.1873-1893
/
2023
The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.
Huanlong Zhang;Weiqiang Fu;Bin Zhou;Keyan Zhou;Xiangbo Yang;Shanfeng Liu
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.9
/
pp.2605-2625
/
2024
Siamese-based segmentation and tracking algorithms improve accuracy and stability for video object segmentation and tracking tasks simultaneously. Although effective, variability in target appearance and background clutter can still affect segmentation accuracy and further influence the performance of tracking. In this paper, we present a memory propagation-based target-aware and mask-attention decision network for robust object segmentation and tracking. Firstly, a mask propagation-based attention module (MPAM) is constructed to explore the inherent correlation among image frames, which can mine mask information of the historical frames. By retrieving a memory bank (MB) that stores features and binary masks of historical frames, target attention maps are generated to highlight the target region on backbone features, thus suppressing the adverse effects of background clutter. Secondly, an attention refinement pathway (ARP) is designed to further refine the segmentation profile in the process of mask generation. A lightweight attention mechanism is introduced to calculate the weight of low-level features, paying more attention to low-level features sensitive to edge detail so as to obtain segmentation results. Finally, a mask fusion mechanism (MFM) is proposed to enhance the accuracy of the mask. By utilizing a mask quality assessment decision network, the corresponding quality scores of the "initial mask" and the "previous mask" can be obtained adaptively, thus achieving the assignment of weights and the fusion of masks. Therefore, the final mask enjoys higher accuracy and stability. Experimental results on multiple benchmarks demonstrate that our algorithm performs outstanding performance in a variety of challenging tracking tasks.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.7
/
pp.1320-1326
/
2017
Recently, IoT has been studying a lightweight protocol to satisfy device communication in a limited network environment. MQTT is a typical lightweight protocol. It supports small fixed headers to minimize overhead, and adopts publish/subscribe structure to guarantee real-time performance. However, MQTT does not support prioritization of important data and can not provide QoS in a specific IoT service. In this paper, we propose a message processing method to consider the priority of various IoT services in MQTT. In the proposed method, the priority flag is added to the fixed header of the MQTT in the node to transmit the message, and the broker confirms the priority of the corresponding message and processes it preferentially. Through experiment and evaluation, we confirmed the reduction of end-to-end delay between nodes according to priority.
Journal of the Korea Society of Computer and Information
/
v.10
no.3
s.35
/
pp.237-247
/
2005
Ubiquitous Sensor Network(USN) is the very core of a technology for the Ubiquitous environments. There is the weakness from various security attacks such that tapping of sensor informations, flowing of abnormal packets, data modification and Denial of Service(DoS) etc. And it's required counterplan with them. Especially it's restricted by the capacity of battery and computing. By reasons of theses. positively, USN security technology needs the lightweighted design for the low electric energy and the minimum computing. In this paper, we propose lightweight USN mutual authentication methology based on trust model to solve above problems. The proposed authentication model can minimize the measure of computing because it authenticates the sensor nodes based on trust information represented by subjective logic model. So it can economize battery consumption and resultingly increse the lifetime of sensor nodes.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38B
no.9
/
pp.707-714
/
2013
IoT, which can be regarded as an enhanced version of M2M communication technology, was proposed to realize intelligent thing to thing communications by utilizing Internet connectivity. Things in IoT are generally heterogeneous and resource constrained. Also such things are connected with each other over LLN(low power and lossy Network). Confidentiality, mutual authentication and message origin authentication are required to make a secure service in IoT. Security protocols used in traditional IP Networks cannot be directly adopted to resource constrained devices in IoT. Under the respect, a IETF standard group proposes to use lightweight version of DTLS protocol for supporting security services in IoT environments. However, the protocol can not cover up all of very constrained devices. To solve the problem, we propose a scheme which tends to support mutual authentication and session key agreement between devices that contain only a single crypto primitive module such as hash function or cipher function because of resource constrained property. The proposed scheme enhances performance by pre-computing a session key and is able to defend various attacks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.9
/
pp.4727-4741
/
2019
The lightweight block cipher Piccolo adopts Generalized Feistel Network structure with 64 bits of block size. Its key supports 80 bits or 128 bits, expressed by Piccolo-80 or Piccolo-128, respectively. In this paper, we exploit the security of reduced version of Piccolo from the first round with the pre-whitening layer, which shows the vulnerability of original Piccolo. As a matter of fact, we first study some linear relations among the round subkeys and the properties of linear layer. Based on them, we evaluate the security of Piccolo-80/128 against the meet-in-the-middle attack. Finally, we attack 13 rounds of Piccolo-80 by applying a 5-round distinguisher, which requires $2^{44}$ chosen plaintexts, $2^{67.39}$ encryptions and $2^{64.91}$ blocks, respectively. Moreover, we also attack 17 rounds of Piccolo-128 by using a 7-round distinguisher, which requires $2^{44}$ chosen plaintexts, $2^{126}$ encryptions and $2^{125.49}$ blocks, respectively. Compared with the previous cryptanalytic results, our results are the currently best ones if considering Piccolo from the first round with the pre-whitening layer.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.1
/
pp.93-98
/
2021
Due to the development of deep learning and AI, the scale of the model has grown, and it has been integrated into other fields to blend into our lives. However, in environments with limited resources such as embedded devices, it is exist difficult to apply the model and problems such as power shortages. To solve this, lightweight methods such as clouding or offloading technologies, reducing the number of parameters in the model, or optimising calculations are proposed. In this paper, quantization of learned models is applied to ONNX models used in various framework interchange formats, neural network structure and inference performance are compared with existing models, and various module methods for quantization are analyzed. Experiments show that the size of weight parameter is compressed and the inference time is more optimized than before compared to the original model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.