Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.70-73
/
2021
최근 영상 및 비디오 분야에 심층 신경망(DNN, Deep Neural Network)을 사용한 연구가 다양하게 진행됨에 따라 High Dynamic Range (HDR) 이미징 기술에서도 기존의 방법들 보다 우수한 성능을 보이는 심층 신경망 모델들이 등장하였다. 하지만, 심층 신경망을 사용한 방법은 큰 연산량과 많은 GPU 메모리를 사용한다는 문제점이 존재하며, 이는 심층 신경망 기반 기술들의 현실 적용 가능성에 제한이 되고 있다. 이에 본 논문에서는 제한된 연산량과 GPU 메모리 조건에서도 사용 가능한 다중 노출 HDR 경량화 심층 신경망을 제안한다. Kalantari Dataset에 대해 기존 HDR 모델들과의 성능 평가를 진행해 본 결과, PSNR-µ와 PSNR-l 수치에서 GPU 메모리 사용량 대비 우수한 성능을 보임을 확인하였다.
In the last few years, convolutional neural networks (CNNs) have demonstrated good performance while solving various computer vision problems. However, since CNNs exhibit high computational complexity, signal processing is performed on the server side. To reduce the computational complexity of CNNs for edge computing, a lightweight algorithm, such as a MobileNet, is proposed. Although MobileNet is lighter than other CNN models, it commonly achieves lower classification accuracy. Hence, to find a balance between complexity and accuracy, additional hyperparameters for adjusting the size of the model have recently been proposed. However, significantly increasing the number of parameters makes models dense and unsuitable for devices with limited computational resources. In this study, we propose a novel MobileNet architecture, in which the number of parameters is adaptively increased according to the importance of feature maps. We show that our proposed network achieves better classification accuracy with fewer parameters than the conventional MobileNet.
This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.
This paper proposes a virtual storage system for smart home/office embedded devices by utilizing AoE and HyperSCSI protocols. It relies on current Ethernet infrastructures and aims to provide a low-cost solution for the storage limitation problem on embedded devices. We choose AoE (ATA over Ethernet) and HyperSCSI in our implementation because they are relatively lightweight compared to other network storage protocols such as NFS(Network File System), CIFS(Common Internet File System) and iSCSI(internet Small Computer System Interface). The design and architecture of our proposed virtual system as well as the prototype demonstration are presented in this paper.
Ubiquitous computing, a new type of network environment has been generating much interest recently and has been actively studied. In ubiquitous computing, the sensor network which consists of low electric power ad-hoc network-based sensors and sensor nodes, is particularly the most important factor The sensor network serves as the mediator between ubiquitous computing and the actual environment. Related studies are focused on network . management through lightweight hardware using RFID. However, to apply these to actual environment, more practical scenarios as well as more secured studies equipped with secures and efficiency features are needed. Therefore, this study aims to build a wireless network based on PTD for multi users, which provides the largest utility in individual networks, and propose an appropriate management method. The proposed method is designed to enhance security and efficiency related to various services required in wireless networks, based on the reliable peripheral devices for users or pm. using pm, which has been applied to electronic commerce transactions in existing papers, this study also proposed an appropriate management method that is suitable for a dynamic environment and setting a temporary group to provide various services.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.5
/
pp.981-986
/
2020
The Internet of Things refers to a space-of-things connection network configured to allow things with built-in sensors and communication functions to interact with people and other things, regardless of the restriction of place or time.IoT is a network developed for the purpose of services for human convenience, but the scope of its use is expanding across industries such as power transmission, energy management, and factory automation. However, the communication protocol of IoT, MQTT, is a lightweight message transmission protocol based on the push technology and has a security vulnerability, and this suggests that there are risks such as personal information infringement or industrial information leakage. To solve this problem, we designed a synchronous MQTT security channel that creates a secure channel by using the characteristic that different chaotic dynamical systems are synchronized with arbitrary values in the lightweight message transmission MQTT protocol. The communication channel we designed is a method of transmitting information to the noise channel by using characteristics such as random number similarity of chaotic signals, sensitivity to initial value, and reproducibility of signals. The encryption method synchronized with the proposed key value is a method optimized for the lightweight message transmission protocol, and if applied to the MQTT of IoT, it is believed to be effective in creating a secure channel.
The Journal of Korean Institute of Communications and Information Sciences
/
v.40
no.8
/
pp.1588-1596
/
2015
In the Internet of Things (IoT), resource-constrained devices such as sensors are capable of communicating and exchanging data over the Internet. The IETF standard group has specified an application protocol CoAP, which uses UDP as a transport protocol, allows such a lightweight device to transmit data. Also, the IETF recommended the DTLS binding for securing CoAP. However, additional features should be added to the DTLS protocol to resolve several problems such as packet loss, reordering, fragmentation and replay attack. Consequently, performance of DTLS is worse than TLS. It is highly required for lightweight devices powered by small battery to design and implement a security protocol in an energy efficient manner. This paper thus discusses about DTLS performance in the perspective of energy consumption. To analyze the performance, we implemented IEEE 802.15.4 based test network consisting of constrained sensor devices in the Cooja simulator. We measured energy consumptions required for each of DTLS client and server in the test network. This paper compares the energy consumption and amount of transmitted data of each flight of DTLS handshake, and the processing and receiving time. We present the analyzed results with regard to code size, cipher primitive and fragmentation as well.
Journal of the Korea Society of Computer and Information
/
v.18
no.11
/
pp.115-124
/
2013
In this paper, we suggest a secure data dissemination by Lightweight Individual Encryption Multicast scheme over wireless sensor networks using the individual encryption method with Forward Error Correction instead of the group key encryption method. In wireless sensor networks, a sink node disseminates multicast data to the number of sensor nodes to update the up to date software such as network re-programming and here the group key encryption method is the general approach to provide a secure transmission. This group key encryption approach involves re-key management to provide a strong secure content distribution, however it is complicated to provide group key management services in wireless sensor networks due to limited resources of computing, storage, and communication. Although it is possible to control an individual node, the cost problem about individual encryption comes up and the individual encryption method is difficult to apply in multicast data transmission on wireless sensor networks. Therefore we only use 0.16% of individually encrypted packets to securely transmit data with the unicast to every node and the rest 99.84% non-encrypted encoded packets is transmitted with the multicast for network performance.
Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
Korean Journal of Remote Sensing
/
v.38
no.2
/
pp.167-177
/
2022
In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.7
/
pp.1706-1725
/
2024
The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.