• Title/Summary/Keyword: lightweight automotive

Search Result 166, Processing Time 0.021 seconds

Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum (핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계)

  • M. G. Kim;J. H. Lee;D. C. Ko
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

Optimal Design of Lightweight Frame for Heavy Flat-Bed Trailer by Using Taguchi Method (다구찌기법을 이용한 대형 평판트레일러 하부프레임 경량설계)

  • Kim, Jin-Gon;Yoon, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • For achieving economical fuel consumption, an increase in the load bearing capacity, and for environmental conservation, there is a constant demand for lightweight frames of commercial vehicles used in the transportation industry. In this study, a structural analysis of the frame of a heavy flat-bed trailer was performed to determine the optimal design of a new lightweight frame made of high-strength steel. To identify the key design parameters of the trailer frame, Taguchi's orthogonal array was used in the experiments. Using ANSYS, a commercial FEA program, the frame structure was optimized with respect to stress, deflection, and torsional stiffness by performing stress and vibration analyses. A physical model of the trailer was also built to verify the validity of the numerical analyses. Finally, an on-road fatigue test of the new lightweight frame made of the high-strength steel, ATOS80, was performed to confirm the durability of the new design.

Tailored Blank Welding of Stainless Steel to Make Lightweight Design Muffler (I) - Laser Butt Welding Characteristic of Stainless Steel Sheet - (머플러 부품의 경량화를 위한 STS강판의 TWB 용접 (I) - STS강판의 레이저 맞대기 용접특성 -)

  • Kim, Yong;Park, Pyoung-won;Park, Ki-young;Lee, Kyoung-don;Kim, Seok-jin
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • This research was conducted as a fundamental study to apply tailored blank welding technique into automotive production process. Specially we tried to apply the TWB technique to exhaust system. The materials used in this work were ferritic 439 stainless steel sheet with a thickness of 1.2mm and 0.8mm. Welding tests were conducted for BOP test and dissimilar thickness (0.8 to 1.2t) cases. Major process parameters were position of focus, travel speed, shielding gas and joint (gap) condition. As a result, there are nothing significant welding characteristic compare with TWB of carbon steel. Stainless steel shows the good weldability and mechanical properties (tensile, hardness and forming strength) also shows high level. Just problem is gap condition. However, also in this case, it shows not only good forming strength but also base metal fracture after tensile test. And to conclude, it is good opportunity to make lightweight design muffler using TB welding technique.

  • PDF

A Study on Impact Collapse Modes of Composite Structural Members using Carbon Fiber Reinforced Plastics for Car Body Lightweight (차체 경량화를 위한 CFRP 복합구조부재의 충격압궤모드에 관한 연구)

  • Hwang, W.C.;Choi, Y.M.;Im, K.H.;Cha, C.S.;Yang, Y.J.;Yang, I.Y.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.7-14
    • /
    • 2014
  • This study aimed to develop members with the optimum impact characteristics to ensure a protected space for passengers in the case of automobile collisions. Accordingly, these members were fabricated to provide sufficient rigidity and safety to the passenger room structure and to absorb large amounts of energy during collision. In particular, CFRP members were fabricated with different section shapes such as square and single- and double-hat shapes. Next, their impact collapse characteristics and collapse modes were quantitatively analyzed according to the changes in section shapes and stacking angles. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.

Development of Manufacture Technology on Aluminum Rear Subframe by Hot Air Forming Method (열간가스성형 공법을 이용한 알루미늄 리어 서브프레임 제조기술 개발)

  • Kim, B.N.;Son, J.Y.;Lee, G.D.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.222-225
    • /
    • 2008
  • Due to new requirements of the automotive industry, concerning lightweight and non-corroding construction, new production methods, The Hot Air Forming process of aluminum alloys are of special interest. The disadvantage of aluminum alloy is the poorer formability compared to steel. The Hot Air Forming process is one of the forming process receiving recent attention. In the current study, Fabrication of aluminum rear subframe has been attempted using seam and seamless aluminum tubes. On the base of hot workability of the extruded tube and PAM-STAMP simulation results, Optimum condition for fabricating aluminum rear sub(lame parts by Hot Air Forming could be determined.

  • PDF

Lap Welding of Magnesium Alloy using Nd:YAG Laser (Nd:YAG 레이저를 이용한 마그네슘 합금의 겹치기 용접)

  • Kim, J.D.;Lee, J.H.;Suh, J.
    • Laser Solutions
    • /
    • v.14 no.3
    • /
    • pp.12-16
    • /
    • 2011
  • In automotive industry, because of the consideration of fuel economy, lightweight alloys have been adopted and are expected to be extensively used in the future. Magnesium alloys are among the promising materials, due to their lightweight and good mechanical properties. This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. A 4kW Nd:YAG laser was used to join AZ31B sheet, and the effects of welding parameter on the quality of lap-welded joints were investigated. As a result of this study, the optimal condition was obtained, and the effect of gap distance was also revealed on the porosity control.

  • PDF

A coupled finite element/meshfreemoving boundary method for self-piercing riveting simulation

  • Cai, Wayne;Wang, Hui-Ping;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.257-270
    • /
    • 2013
  • The use of lightweight materials has been steadily increasing in the automotive industry, and presents new challenges to material joining. Among many joining processes, self-piercing riveting (SPR) is particularly promising for joining lightweight materials (such as aluminum alloys) and dissimilar materials (such as steel to Al, and metal to polymer). However, to establish a process window for optimal joint performance, it often requires a long trial-and-error testing of the SPR process. This is because current state of the art in numerical analysis still cannot effectively resolve the problems of severe material distortion and separation in the SPR simulation. This paper presents a coupled meshfree/finite element with a moving boundary algorithm to overcome these numerical difficulties. The simulation results are compared with physical measurements to demonstrate the effectiveness of the present method.

Structure Optimization for a Lower Control Arm Using Sensitivity Analysis (민감도 해석을 이용한 로우어 컨트롤 암의 구조 최적설계)

  • Song, Byoung-Cheol;Jo, Young-Jik;Kim, Ju-Hyoung;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 2008
  • Recently developed automotive components are of lightweight nature, providing automobiles with a high fuel efficiency and performance. In response to those trends of car developments, this study proposes a structural optimization method for the lower control ann. Lightweight design of lower control am can be achieved through two approaches: design and material technology. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. In this research, the design of experiments(DOE) built in ANSYS WORKBENCH are utilized to determine the optimum shape of a Lower Control Arm. And optimum design is compared first model and reduced design variable model that considered sensitivity using orthogonal array.

  • PDF

Updated Pretreatment Technologies for Automotive in Japan

  • Takaknwa, Hideki;Ishii, Hitoshi
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.245-250
    • /
    • 2007
  • Recently, to avoid global warming, reduction of $CO_2$ generation has been demanded. Each car manufacture takes positive actions for improvement in fuel consumption by various kinds of countermeasures, e.g. improving engine efficiency, using alternative fuels, lightening the car body. Regarding lightening of the car body, aluminum alloys and high tensile strength steels has been gradually adopted as lightweight materials. However, such materials are normally not easy to be treated with zinc phosphate system. Focusing the pre-treatment processes, low temperature phosphate system could be demanded for energy saving. This time, new surface conditioning process for lightweight materials and low temperature phosphate system shall be discussed.

A study on the forming analysis of double-dome model considering CFRP prepreg laminate condition and coefficient of friction (CFRP Prepreg 적층조건과 금형 마찰계수를 고려한 Double-dome 형상 성형해석 연구)

  • Kim, Young-Ju;Lee, San-Ho;Kim, Heung-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.12-17
    • /
    • 2016
  • Recently, lightweight material is attracting attention as a solution to the problem of fuel efficiency and increasing the need for development. CFRP has been attracting attention as lightweight materials for automobile because it has a high specific stiffness and specific strength compared to steel material. CFRP have a wide range of mechanical properties depending on the laminate condition. In this paper, study on the forming analysis of double-dome model was performed considering CFRP prepreg laminate condition and coefficient of friction. After forming analysis, the result has compared with wrinkling area and vertical strain of fiber to the laminated condition. And then compared with inflow of blank to the laminate condition. Through this paper, we propose the forming analysis methods of CFRP material.