• Title/Summary/Keyword: lightweight automotive

Search Result 167, Processing Time 0.022 seconds

A study on micro-deburring of thin magnesium plate for application of electronic products (마그네슘 박판의 전자부품 적용을 위한 마이크로 디버링에 관한 연구)

  • Lee, Jung-In;Kim, Tae-Wan;Kwak, Jae-Seob;Jung, Young-Deug
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.70-73
    • /
    • 2012
  • Drill process is usually used to manufacture a industry about processing, Therefore, the burr problem is very significant, The burrs took place when drill process. And then, sometimes, the burrs are often caused of some problems during automatic such as no good quality products and having good surface roughness products. And also, this paper had some experiments using magnesium. Specially, the magnesium is one of the non-ferromagnetic materials. Magnesium has attracted a lot of interest for using the industry. They offer a possible alternative to steel and aluminum in automotive and aero industries to satisfy the lightweight requirement. also, magnesium has good specific strength and absorbs vibration in occurring working process. So, it has good quality of product processing. And then, it is one of the lightest materials being used to electronic product's cases and automotive because of lightweight and miniaturization. But this material has not widely used all of the industry due to its natural property. If the magnesium is contacted water, it will cause the exploration. But, nowadays many of people study magnesium to safe their experiment and to widely use this industry.

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Properties of SBR Compound using Silica-graphite Dual Phase Filler (실리카-그라파이트 이원 충진제를 이용한 SBR 컴파운드의 성질)

  • Shin, Ji Hang;Shanmugharaj, A.M.;Lee, Pyoung Chan;Jeoung, Sun Kyung;Ryu, Sung Hun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Carbon coating on silica particles is done by grafting expanded graphite on the silica aggregates. Successful coating of carbon is corroborated using FT-IR, TGA, XPS and TEM. Crystalline nature of coated graphite is corroborated using XRD. Influence of carbon coated silica particles on rheometric and mechanical properties of SBR composites are investigated. Carbon coated silica particles showed significant improvement in rheometric and mechanical properties, when compared to pristine silica filled system corroborating higher polymer-filler adhesion. This fact was further supported by bound rubber content and equilibrium swelling ratios of unvulcanized and vulcanized SBR composites.

A study on micro-deburring of thin magnesium plate for application of electronic products (마그네슘 박판의 전자부품 적용을 위한 마이크로 디버링에 관한 연구)

  • Lee, Jung-In;Kim, Tae-Wan;Kwak, Jae-Seob;Jung, Young-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.51-54
    • /
    • 2008
  • Drill process is usually used to manufacture a industry about processing, Therefore, the burr problem is very significant, The burrs took place when drill process. And then, sometimes, the burrs are often caused of some problems during automatic such as no good quality products and having good surface roughness products. And also, this paper had some experiments using magnesium. Specially, the magnesium is one of the non-ferromagnetic materials. Magnesium has attracted a lot of interest for using the industry. They offer a possible alternative to steel and aluminum in automotive and aero industries to satisfy the lightweight requirement. also, magnesium has good specific strength and absorbs vibration in occurring working process. So, it has good quality of product processing. And then, it is one of the lightest materials being used to electronic product's cases and automotive because of lightweight and miniaturization. But this material has not widely used all of the industry due to its natural property. If the magnesium is contacted water, it will cause the exploration. But, nowadays many of people study magnesium to safe their experiment and to widely use this industry.

  • PDF

An Analysis of Dent Formation by Dynamic Finite Element Method (동적 유한요소해석을 이용한 Dent 발생에 대한 연구)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Kim, Jong-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • For the improvement of fuel consumption, the study on the use of lightweight material or thinner sheet have been carried out in automotive industry. With the need for the use of thinner sheet, the dent resistance became one of the major concern in th design of exterior panels in automotive industry. Many studies have been carried out for the dent resistance by experiment or quasi-static numerical simulation. In this study, the dent formation behavior is investigated by dynamic finite element analysis using ABAQUS. Dent formation may be affected by many factors such as sheet thickness, material properties, pre-strain, and sheet curvature. The effect of these factors on dent resistance is investigated. From the analysis following three conclusions are derived. First, dent resistance become hard as the sheet curvature radius increases. Second, dynamic dent resistance is mainly affected by bending stress rather than tensile stress. Third, the pre-strain itself do not give any guidance for dynamic dent resistance and dynamic dent resistance have to be decided considering the strain hardening and thickness reduction together. The results are considered to be reliable and useful to improve the dent damage of automotive panels.

Light-weight Design of Automotive Spring Link Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 스프링 링크의 경량화 설계)

  • Park, Jun-Hyub;Kim, Kee Joo;Yoon, Jun-Gyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.157-161
    • /
    • 2013
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger spring link have been studied without sacrificing the safety of automotive components. In this study, the weight reduction design process of spring link could be proposed based on the variation of von-Mises stress contour by substituting an aluminum alloys (A356) having tensile strength of 245 MPa grade instead of SAPH440 steels. In addition, the effect of the stress and stiffness on shape variations of the spring link were examined and compared carefully. It could be reached that this approach could be well established and be contributed for light-weight design guide and the safe design conditions of the automotive spring link development.

Design and Implementation of Automotive Intrusion Detection System Using Ultra-Lightweight Convolutional Neural Network (초경량 Convolutional Neural Network를 이용한 차량용 Intrusion Detection System의 설계 및 구현)

  • Myeongjin Lee;Hyungchul Im;Minseok Choi;Minjae Cha;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.524-530
    • /
    • 2023
  • This paper proposes an efficient algorithm to detect CAN (Controller Area Network) bus attack based on a lightweight CNN (Convolutional Neural Network), and an IDS(Intrusion Detection System) was designed, implemented, and verified with FPGA. Compared to conventional CNN-based IDS, the proposed IDS detects CAN bus attack on a frame-by-frame basis, enabling accurate and rapid response. Furthermore, the proposed IDS can significantly reduce hardware since it exploits only one convolutional layer, compared to conventional CNN-based IDS. Simulation and implementation results show that the proposed IDS effectively detects various attacks on the CAN bus.

Optimal Design of Lightweight High Strength Door with Tailored Blank (합체박판 기술을 적용한 고장도 경량도어 최적 설계)

  • 송세일;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

Material Arrangement Optimization for Automotive BIW considering a Large Number of Design Variables (과다 설계변수를 고려한 차량 BIW의 소재배치 최적화)

  • Park, Dohyun;Jin, Sungwan;Lee, Gabseong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2013
  • Weight reduction of a automobile has been steadily tried in automotive industry to improve fuel efficiency, driving performance and the production profits. Since the weight of BIW takes up a large portion of the total weight of the automobile, reducing the weight of BIW greatly contributes to reducing the total weight of the vehicle. To reduce weight, vehicle manufacturers have tried to apply lightweight materials, such as aluminum and high-strength steel, to the components of BIW instead of conventional steel. In this research, material arrangement of an automotive BIW was optimized by formulating a design problem to minimize weight of the BIW while satisfying design requirements about bending and torsional stiffness and perform a metamodel-based design optimization strategy. As a result of the design optimization, weight of the BIW is reduced by 45.7% while satisfying all design requirements.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.