• 제목/요약/키워드: lightweight automotive

검색결과 167건 처리시간 0.02초

반응표면법에 의한 레디어스로드 최적구조설계 및 피로해석 (Optimal Structural Design and Fatigue Analysis of Radius Rod by Response Surface Method)

  • 박소현;김은성;오상엽;유효선;양성모;김용관
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.29-35
    • /
    • 2014
  • This paper aims to obtain the effect of lightweight on Radius rod. The response surface method used in the paper is the statistical method. Optimization method is performed with the Radius rod using the lightweight material. Structural analysis is executed by using the ANSYS program to find static and dynamic responses. From this study result, it is verified that the response surface method has the advantage of optimum value in comparison with other optimization methods. The analysis is also performed by response surface method to derive optimal design values. Steel model and aluminium initial model are obtained by finite element analysis to clarify design criteria and the results are compared with three models each other. The weights can be reduced by optimal design analysis results of these models similar to those of existing products. The quantitative goals in this study can also attained through results of fatigue analyses. The reliability on optimal design of Radius rod can be improved by use of structural and fatigue analysis results.

열팽창캡슐 적용 발포폴리프로필렌의 물리적 특성 비교 (Physical Properties of Polypropylene Foam Blended with Thermally Expandable Microcapsules)

  • 하진욱;정선경;이평찬;황예진;남병국;한인수;곽성복;이재용
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.64-70
    • /
    • 2015
  • 열팽창 캡슐은 코어에 위치한 발포가스가 기화온도 이상이 될 경우 캡슐을 팽창시켜 상온상태보다 큰 부피를 지닌 형태를 이루게 되는데 이러한 특성을 이용하여 플라스틱의 발포소재로 적용이 가능하다. 본 연구에서는 자동차 내외장재 용도로 가장 많이 사용되는 폴리프로필렌(polypropylene, PP)을 베이스 원료로 하여 기존 화학발포제와 열팽창 캡슐을 이용하여 PP 폼을 제조하였으며, 제조된 시편의 물리적인 특성을 비교하였다. 화학 발포제와 열팽창 캡슐을 적용하여 제조된 PP 폼은 모두 첨가된 발포제 및 열팽창 캡슐 함량 증가에 따라 시편의 밀도가 감소하였고, 인장강도를 포함한 기계적 물성 또한 감소하였다. 하지만, 열팽창 캡슐을 이용해 제조된 PP 폼의 경우는 화학 발포제를 적용하여 만들어진 시편대비 충격강도 감소량이 크지 않았다. 발포제 종류별로 상이한 물리적 특성을 분석하기 위하여 PP 폼의 매트릭스를 분석하였으며, 다른 형상의 모폴로지를 관찰하였다.

차량용 도어 힌지의 경량화를 위한 재질별 수명 예측 (Analysis on Life Prediction for Different Materials in Vehicle Door Hinge Lightweight Design)

  • 유기현;김홍건
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.693-699
    • /
    • 2013
  • Environmental issues are attracting increasing interest worldwide, and accordingly, environmental regulations for vehicles are being made more stringent. As a result, the car industry is conducting studies focusing on fuel efficiency and lightweight vehicles. To manufacture lightweight vehicles, existing steel parts are replaced by composite materials and lightweight metals. In this study, the fatigue life of a new material for manufacturing lightweight car door hinges was predicted using a finite-element analysis program. The existing steel material was replaced by carbon-fiber-reinforced plastic (CFRP) and aluminum alloy 6061, and the test results were analyzed. The maximum stress decreased by approximately three times, whereas the fatigue life and safety factor increased. When only CFRP was used, its allowable stress, safety factor, and fatigue life were excellent, but the sagging of the product exceeded the allowable value, which posed a limitation in use. Therefore, it seems desirable to use an appropriate combination of steel, AA6061, and CFRP for this product.

하이브리드 상용차용 경량 비상조향장치 유압방향제어밸브의 성능특성 연구 (Characteristics of Lightweight Hydraulic Directional Control Valve for Emergency Steering in Hybrid Electric Commercial Vehicles)

  • 박경민
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.291-297
    • /
    • 2013
  • Hydraulic directional control valves actuated by solenoid are used to control emergency steering in general or hybrid electric commercial vehicles. In this study, a new lightweight hydraulic directional control valve was designed by flow and structural simulation, and was fabricated; the basic operation, pressure differentials, and inner leakage flow were evaluated experimentally. In the results, the new model showed comparable performance with an existing imported valve. New valve was 80% the weight of the existing valve and had few components. Installing this valve on a truck body is easier because of its compactness and small size.

자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향 (Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump)

  • 허형석;이기수;배석정
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.

최적화기법 및 실험계획 법을 이용한 자동차 도어의 경량화 설계 (Lightweight Design for Automotive Door Using Optimizations and Design of Experiments)

  • 송세일;배금종;이권희;박경진
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.125-132
    • /
    • 2002
  • Recently, ULSAB(Ultra Light Steel Auto Body) concept is getting more attention due to various benefits in automotive body design. One of the ULSAB efforts is making a door with TWB(Tailor Welded Blanks). In TWB, two or more patches of steel panels are welded together before stamping process. In this research, domains and thicknesses of the patches in a front door structure are determined by a series of optimization schemes composed of topology, size and shape optimization and DOE(Design of Experiments) scheme. A door is designed to have better performances compared to exiting structure considering static stiffness and natural frequency. The final design is discussed and compared to the existing design.

알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구 (Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body)

  • 김범진;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

전기전도성 분말과 알루미늄 코팅 유리섬유를 사용한 자동차용 크래쉬패드의 전자파 차폐 특성에 관한 연구 (A Study on the Electromagnetic Shielding Characteristics of Crash Pad Using Electrically Conductive Powders and Al-coated Glass Fiber as Filler in Automotive)

  • 조홍;정선경;김병우
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.124-130
    • /
    • 2014
  • The automotive industry is moving from the internal combustion engine to electric drive motors. Electric motors uses a high voltage system requiring the development of resources and components to shield the system. Therefore, in this study, we analyze electromagnetic interference (EMI) shielding effectiveness (SE) characteristics of an auto crash pad according to the ratio of electrically conductive materials and propylene. In order to combine good mechanical characteristics and electromagnetic shielding of the automotive crash pad, metal-coated glass fiber (MGF) manufacturing methods are introduced and compared with powder-type methods. Through this study, among MGF methods, we suggest that the chopping method is the most effective shielding method.

차량 경량화를 위한 최적설계에 관한 연구 (A Study on the Optimal Design for Lightweight Vehicle Dash)

  • 이경일
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.

경량 재료를 이용한 DCB 시험편의 열림 모드에서의 파손 특성에 관한 연구 (A Study on Fracture Characteristics in Opening Mode of a DCB Specimen Using a Lightweight Material)

  • 김재원;조재웅
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.42-47
    • /
    • 2021
  • Recently, many structures using lightweight materials have been developed. This study was conducted by using Al6061-T6 and carbon fiber reinforced plastic (CFRP), two common lightweight materials. In addition, the failure characteristics of an interface bonded between a single material and a heterogeneous bonding material were analyzed. The specimens bonded with CFRP and Al6061-T6 were utilized by the combination of the heterogeneous bonding material. The specimens had a double cantilevered shape and the bonding between the materials was achieved by applying a structural adhesive. The experiments were conducted in opening mode: the lower part of the samples was fixed, while their upper part was subjected to a forced displacement of 3 mm/min by using a tensile tester. Under the tested amount of strength, energy release rate, and considering the specimens' fracture characteristics in opening mode, the specimen "CFRP-Al" presented the maximum stress, followed by "Al" and "CFRP". We can hence conclude that the inhomogeneous material "CFRP-Al" is useful for the construction of lightweight structures bonded with structural adhesive.