• Title/Summary/Keyword: lightning impulse voltage

Search Result 153, Processing Time 0.026 seconds

Analysis of Soil lonization Characteristics in Concentric Cylindrical Electrode System under Impulse Voltages (임펄스전압에 의한 동심원통형 전극계에서 토양 이온화특성 분석)

  • Kim, Hoe-Gu;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.32-39
    • /
    • 2008
  • This paper presents the soil ionization phenomena and the parameters with the transient characteristics of model grounding system under lightning impulse voltages. lonization properties of dry and wet sands were investigated by using two test cells of concentric cylindrical electrode system with different dimensions. As a result non-linear electrical behavior of sand under high impulse voltage is caused by ionization process. The transient impedance of sand depends not only on the water content but also on the magnitude of applied impulse voltages. The grounding impedance is decreased with increasing the water content and the magnitude of a lied voltages. The results resented in this paper will provide useful information on the design of high performance grounding systems against lightning surge.

Analysis of Impulse Withstand Voltage Performance of Lighting Equipment (조명기기의 임펄스내전압 성능의 분석)

  • Lee, Bok-Hee;Pang, Pyung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.91-96
    • /
    • 2014
  • Modern electronic circuits are becoming more vulnerable to damage by surges, and it is required to improve the impulse withstand voltage performance of electrical and electronic equipment. This paper presents the impulse withstand voltage performance of lighting equipment connected to power lines, and the impulse withstand voltage tests for fluorescent lamp, LED lamp and halogen lamp were carried out according to the reference standards under normal service conditions. To conduct performance tests against lightning surge, a combination wave ($1.2/50{\mu}s$ voltage - $8/20{\mu}s$ current) was employed. The test surge was applied between lines or between line and ground of the specimen to be measured. The test surge was applied synchronized at the peak value of the positive and negative AC voltage waves. As a consequence, some specimens satisfied the impulse withstand voltage test criteria, but lighting equipment such as 36W fluorescent lamps, 5W and 5.5W LED lamps and 50W halogen lamp were damaged at the test voltage levels between power lines. It is needed to improve the qualities of lighting equipment to satisfy EMC immunity requirements of equipment for general lighting purposes.

Diagnostic Techniques of Lightning Arresters for DC Electric Traction Vehicles (직류전동차용 피뢰기 진단기술)

  • Kil Gyung-Suk;Song Jae-Yong;Kim Il-Kwon;Moon Seung-Bo;Shin Gwang-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.357-361
    • /
    • 2006
  • This paper dealt with the performance evaluation and the diagnostic techniques of lightning arresters for DC electric traction vehicle. Field Measurements on the protective operation of lightning arresters against surge currents were carried out on running vehicles to acquire the data necessary for the diagnosis. The frequency and the magnitude of surge events were analyzed. Surge currents of $1\sim3$ times were recorded in one running service route and their magnitudes were ranges of $150A\sim2kA$. Also, an acceleration experiment on a lightning arrester by the standard lightning impulse current of 8/20 us and 5 kA was performed to know the aging characteristics. After the surge current application of 3,000 times, the reference voltage decreased by 4.5 %, and the leakage current was below 10 uA at the continuous operating voltage and about 50 uA at the rated voltage. From the experimental results, we propose a decision level of leakage current for the arrester used in this paper and designed an arrester tester which analyzes arrester condition by the magnitude of leakage current.

Features of Transient Overvoltages Observed at 22.9kV Consumer's Substation (22.9kV 수전설비에서 측정된 과도과전압의 특성)

  • Shim, Hae-Sup;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.52-59
    • /
    • 2014
  • The aims of this paper are to characterize the transient overvoltages(TOVs) and to evaluate the risk occurring at 22.9kV consumer's substation. The measurements of lightning- and switching-caused TOVs were made during Mar. 2013 and Feb. 2014. As a consequence, 47 events of TOVs were recorded and 4 of them were higher than the input voltage envelope(IVE) of the information technology industry council(ITI) curve. The measured TOVs are characterized by longer front times and longer durations compared to the $1.2/50{\mu}s$ standard impulse voltage waveform, and some of them represent bipolar waves with lower oscillation frequencies. It suggests that the test of non-standard impulse voltage waveforms is needed for effective risk assessments of power apparatus. Lightning- and switching-caused TOVs exceeding IVE of ITI curve are induced at the secondary of 22.9kV potential transformer(PT). We may, therefore, conclude that the surge protection devices should be applied at the secondary of PT and the surge absorbers should be installed at the primary of VCB or PT. The results presented in this paper could be useful to design the reasonable insulation coordination for 22.9kV consumer's substation.

Breakdown Characteristics of $SF_{6}-N_{2}$ Mixtures in Nonuniform electric Field (불평등전계 중에서 $SF_{6}-N_{2}$ 혼합기체의 절연파괴 특성)

  • Lee, Bok-Hee;Lee, Kyoung-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1999-2001
    • /
    • 2000
  • Impulse breakdown voltage characteristics of sulphur-hexafluoride/nitrogen ($SF_{6}-N_{2}$) mixtures were presented. The applied voltages were the positive and negative lightning impulse (1.2/44${\mu}s$) and oscillating impulse ($0.4{\mu}s$/2.08MHz) voltages. The predischarge current was observed to clarify the breakdown mechanism. The electrode system was consisted of plane to plane configuration with a needle-shaped protrusion whose length and diameter are 10mm and 1mm. The measurements were carried out at the gas pressure of mixtures up to 0.5MPa with nitrogen concentrations varying from 5 to 20%. The electrical breakdown in $SF_{6}-N_{2}$ mixtures develops with steplike pulses in leader mechanism. The minimum breakdown voltages for the negative lightning and oscillating impulse voltages were higher than those for the positive.

  • PDF

SLI, AC Breakdown Voltage Characteristics of $SF_6/CF_4$ Mixtures Gas in Nonuniform Field (불평등전계에서 $SF_6/CF_4$ 혼합 가스의 SLI, AC 절연내력 특성)

  • Hwang, Cheong-Ho;Sung, Heo-Gyung;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.245-251
    • /
    • 2008
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field was performed. The experiments were carried out under AC voltage and standard lightning impulse(SLI) voltage. Breakdown characteristics were investigated for $SF_6/CF_4$ mixtures when AC voltages and standard lighting impulse voltage was applied in a needle-plane. The needle-plane electrode whose gap distance was 3 mm were used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.5 MPa. The breakdown characteristics of $SF_6/CF_4$ mixtures in non-uniform field may be influenced by defects like needle-shaped protrusions. In case of slowly rising SLI voltage and AC voltage it is enhanced by corona-stabilization. This phenomena caused by the ion drift during streamer development and the resulting space-charge is investigated. In non-uniform field under negative SLI voltage the breakdown voltage was increase linearly but under positive SLI voltage the breakdown voltage increase non-linearly. The breakdown voltage in needle-plane electrode displayed N shape characteristics for increasing the content of $SF_6$ at AC voltage. $SF_6/CF_4$ mixture has good dielectric strength and arc-extinguishing properties than pure SF6. This paper presents experimental results on breakdown characteristics for various mixtures of $SF_6/CF_4$ at practical pressures. We could make an environment friendly gas insulation material with maintaining dielectric strength by combing $SF_6\;and\;CF_4$ which generates a lower lever of the global warming effect.

Electrical Characteristic of a Suspended Porcelain Insulator with a 154 kV Transmission Line (154 kV 송전선로 자기재 현수 애자의 전기적 특성 규명에 관한 연구)

  • Jeon, Seongho;Choi, In-Hyuk;Kim, Taeyong;Lee, Youn-Jung;Koo, Ja-Bin;Son, Ju-Am;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.56-59
    • /
    • 2020
  • Porcelain insulators are typically exposed to surface discharge and lightning impulse in service. This study investigates the insulation characteristics of the external and internal discharges of a porcelain insulator with respect to its flashover for a 154 kV transmission line. The experiments are also conducted using a wet flashover test and an impulse test based on the external discharge and the internal penetration, to classify the flashover voltage-time curve of the porcelain insulator. When an impulse with a strength of 2,500 kV/㎲ was applied three times to 6.5 mm ceramic samples, electrical penetration of approximately 70% occurred. The impulse experiment confirmed that the electrical penetration inside the porcelain insulator coincided with the area where the electric field was concentrated. The wet flashover voltage test revealed that the flashover threshold voltage increases by approximately 7% after cleaning of the surface.

A Rise in Electric Potential of Telecommunication Line for Electric Power System by Lightning Surges (뇌서지에 의한 전력통신선로의 전위상승)

  • Lee, Bok-Hee;Chang, Sug-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1718-1720
    • /
    • 1997
  • This paper deals with n rise in electric potential of telecommunication line for electric power system by lightning surges. When $1.2/50{\mu}s$ and $8/20{\mu}s$ impulse voltage and current were applied on telecommunication cable, the voltage waveforms at the end terminal and equipment were measured. The telecommunication lines, which consist of 60 conductors and 3.5km in length, have some surge protectors such as preposition lightning arrester and TVSS. In each case, the rise in electric potential was measured for differential mode and common mode, respectively. Also, the rise in ground potential and the induced voltages were measured and analyzed. As a result, a significant rise in ground potential was observed for lightning surge. It can cause failure or malfunction of telecommunication systems.

  • PDF

A Study on Investigation Method of the Electric Fire Scene Caused by Lightning (낙뢰로 인한 전기화재의 현장조사기법 연구)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Kim, Jin-Pyo;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • In recently years, occurrences of lightning return strokes have been increased by global worming effect and intensity of lightning impulse voltage and current accompanied by lightning discharges has being strengthening. In Korea, 560 thousand lightning discharges happened in 200S. According to the increasing frequencies of lightning, human deaths and damages to the structure have been increased steadily. Electric fire caused by lightning return strokes due to the breakdown between power line and ground line from the ground potential rise on a process of the lightning impulse current through to the ground. The damages of lightning were occurring at same time in the neighboring areas of the lightning point. In order to protect from the lightning stroke, we made a suggestion to use protection devices and equipotential bonding at the dangerous areas. The analysis results of electric fires caused by lightning would be utilized to investigate and to find accurate fire cause in the fire scenes.

Transient Ground Impedance of Small-sized Ground Electrode considering Underground Discharge in Frozen Soil (동결 토양에서 지중방전을 고려한 소규모 전극의 과도접지임피던스 특성)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.324-327
    • /
    • 2009
  • This paper presents the transient impedance in a discharge region when high voltage lightning impulse is applied to small-sized ground electrodes in frozen soil. For a realistic analysis of ionization characteristics near the ground electrode in the soil, ground rod installed outdoors and high voltage impulse voltage generator were used. From the analysis of response voltage and current flowing ground electrode to earth, it was verified that the ionization near the ground electrode contributes to reduction of ground impedance and limits the ground potential rise effectively under high impulse voltage.

  • PDF