• Title/Summary/Keyword: light-emitting module

Search Result 83, Processing Time 0.023 seconds

Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator (엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템)

  • Min-ho Lee;Kun-woo Na;Seungoh Han
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

Technical Characteristics and Trends of Capsule Endoscope (캡슐 내시경의 기술적 특징과 동향)

  • Kim, Ki-Yun;Won, Kyung-Hoon;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.329-337
    • /
    • 2012
  • Capsule Endoscope(CE) is a capsule-shaped electronic device which can examine the lesions in digestive tract of human body. Recently the medical procedure using capsule endoscope is receiving great attention to both doctors and patients, since the conventional push-typed endoscope using cables brings great pain and fear to the patients. The technique was firstly available in 2000 and is based on a convergence techniques among BT(Bio Technology), IT(Information Technology), and NT(Nano Technology). The device consists of an optical parts including LEDs(Light Emitting Diodes), an image sensor, a communication module and a power module. Capsule endoscope is the embodiment of the state-of-the art technology and requires key technologies in the various engineering fields. Therefore, in this paper, we introduce the composition of the capsule endoscope system, and compare the communication method between RF(Radio Frequency) communication and HBC(Human Body Communication), which are typically used for data transmission in the capsule endoscope. Furthermore, we analyze the specification of commercialized capsule endoscopes and present the future developments and technical challenges.

Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices (회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈)

  • Kim, Chang Il;Yeo, Seo-Yeong;Park, Buem-Keun;Jeong, Young-Hun;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.311-317
    • /
    • 2019
  • Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

The Design of an Infrared Transcutaneous Control Unit for Totally Implantable Middle Ear System (완전 이식형 인공중이를 위한 체외 및 체내 제어시스템 구현)

  • 정의성;강호경;박일용;윤영호;김민규;송병섭;원철호;조진호
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.71-78
    • /
    • 2004
  • An infrared remote control-type transcutaneous control device using a $\mu$-processor is design for the totally implantable middle ear system. An infrared light transmission model for the tissue of skin was introduced and then a radiant intensity and the required current of the infrared light emitting diode(IR LED) driving circuit at transmission part were calculated for the external control device. And the transmission part generates IR signal by the system's own data protocol which prevents interferences from other infrared remote controls of the household appliances. The control part of the implanted device was designed to analyze functions of the received infrared(IR) signal that indicate the power ON/OFF and volume UP/DOWN. After the system is implemented, a data transmission experiments using 4 mm thickness of porcine skin were carried out. From the experiment, it was verified that the infrared control signal was transmitted to receiving module of the implemented system without any error.

A study on the short-range underwater communication using visible LEDs (근거리 수중통신을 위한 가시광 LED 적용에 관한 연구)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.425-430
    • /
    • 2013
  • Robust and high speed underwater communication is severely limited when compared to communications in terrestial. In free space, RF communication operates over long distances at high data rates. However, the obstacle in seawater is the severe attenuation due to the conducting nature. Acoustic modems are capable of long range communication up to several tens of kilometers, but it has low data-rate, high power consumption and low propagation speed. An alternative means of underwater communication is based on optics, wherein high data rates are possible. In this paper, the characteristics of underwater channel in the range of visible wavelength is investigated. And the possibility of optical wireless communication in underwater is also described. The LED-based transceiver and CMOS sensor module are integrated in the system, and the performance of image transmission was demonstrated.

Development of bicycle device to strengthen safety (안전 강화를 위한 자전거 장치 개발)

  • Oh, Byung-Wuk
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • With the growing number of people using bicycle, the number of bicycle accidents also has been increasing. It is said that bicycle accident can be reduced up to 11%~44% when riding a bicycle if LED light is used. The headlight of the bicycle makes exposure effect to the opposite side of bike rider while taillight makes exposure effect to the rear bike rider for improving safety. Bicycle safety device capable of displaying a change of direction by LED is implemented in this study in response to control button signal. This signal makes LED light which is installed in pedal and wheel of bicycle as a module type emitting or flickering during the fixed hour. Bicycle auxiliary device in pedal which is able to improve safety using LED when bikers are riding a bike at night is developed in this study. Bicycle safety device applying wireless communication technology will be expected alternative technology in the future to solve a social problem such as energy, environment, and safety.

Bactericidal Effect of a 275-nm UV-C LED Sterilizer for Escalator Handrails: Optimization of Optical Structure and Evaluation of Sterilization of Six Bacterial Strains

  • Kim, Jong-Oh;Jeong, Geum-Jae;Son, Eun-Ik;Jo, Du-Min;Kim, Myung-Sub;Chun, Dong-Hae;Kim, Young-Mog;Ryu, Uh-Chan
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.202-211
    • /
    • 2022
  • In the pasteurization of escalator handrails using ultraviolet (UV) sterilizers, a combination of light distribution and escalator speed has priority over other important factors. Furthermore, since part of the escalator handrail has a curved structure, proper design is needed to improve the sterilization rate on the surfaces touched by users. In this paper, two types of sterilizers satisfying these conditions are manufactured with 275-nm UV-C LEDs, after modeling the three-dimensional (3D) structure of an escalator handrail and simulating optical distributions of UV-C irradiation on the handrail's surface according to light-emitting diode (LED) positions and reflector variations in the sterilizers. Pasteurization experiments with the UV-C LED sterilizers are conducted on six types of gram-positive and gram-negative bacteria, with exposure times of 0.2, 5, and 15 s at an actual installation distance of 20 mm. The sterilization rates for the gram-positive bacteria are 10.63% to 27.94% at 0.2 s, 89.44% to 96.30% at 5 s, and 99.64% to 99.88% at 15 s. Those for the gram-negative bacteria are 57.70% to 77.63% at 0.2 s, 98.90% to 99.49% at 5 s, and 99.88% to 99.99% at 15 s. The power consumption of the UV-C LED sterilizer is about 8 W, which can be supplied by a self-generation module instead of an external power supply.

A study on the curing characteristics of multi-concentrating UV-LED Curable Coating (다중 집광성 UV-LED 경화형 코팅의 경화특성에 관한 연구)

  • Jung, Chan-Gwon;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.339-345
    • /
    • 2018
  • We investigated the curing properties of cured coatings for a multi-focal UV-LED. The coatings are for LEDs that operate at multiple UV wavelengths, unlike conventional single-wavelength UV-LEDs. Using UV-LED light sources with wavelengths of 365, 395, 420, and 450 nm, we analyzed the optical characteristics such as the direction of light flux and light source. We also analyzed the curing characteristics at each UV-LED wavelength to optimize the LED for composite wavelengths. The curing performance state was predicted through computer simulation for when the multiple wavelengths of UV light sources are superimposed, and then actual LEDs were designed and fabricated. To improve the internal high-speed curing, a multi-spot module was fabricated, in which each LED is condensed, and multiple wavelengths are synthesized and condensed at the same position. The adhesive strength, surface hardness, and internal hardness of the curing agent were tested by varying the wavelength combination conditions. The surface hardening and internal hardening were compared and analyzed using a hardness tester and FT-IR analyzer. As a result, the characteristics of the surface and internal hardness were improved by a multi-spot method in which four wavelengths were overlapped in a UV-LED rather than a single wavelength.

Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals (소동물 발광영상 측정을 위한 광학분자영상기기의 개발)

  • Lee, Byeong-Il;Kim, Hyeon-Sik;Jeong, Hye-Jin;Lee, Hyung-Jae;Moon, Seung-Min;Kwon, Seung-Young;Choi, Eun-Seo;Jeong, Shin-Young;Bom, Hee-Seung;Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • Purpose: Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. Materials and Methods: In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. Results: We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. Conclusion: We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future.

Sensibility Evaluation on the Correlated Color Temperature in White LED Lighting (백색 LED 조명의 색온도에 관한 감성평가)

  • Jee, Soon-Duk;Lee, Sang-Hyuk;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2008
  • The aim of this study is to investigate the sensitivity evaluation of human beings in reacting to the correlated color temperature of the optical properties of white LED lighting. For the sake of this study, white light-emitting diode modules have been fabricated their correlated color temperature have been measured, test cabinets for the sensitivity evaluation have been constructed with the white LED modules, and their sensitivity reactions on the test cabinets have been evaluated and analyzed. The sensitivity reaction has been evaluated by the semantic differential method with 15 selected questions, and the reliability and the content validity of their lighting have been analyzed to 3 factors which foe the activity as the first factor, the stability as the second one, the potency as the third one, respectively. For the data analysis on the sensitivity reaction, the dependent variable is the score of the sensitivity evaluation and the independent one is the correlated color temperature of the test module. The results of this study is as follows: In the case of the sensitive evaluation on the activity and the potency in the white LED lighting compared with the fluorescent lamp, the subjects have made higher mark on $MA_3$ with 8,300[K], and in the factor of the stability, they have made higher mark on $MA_1$ with 3,800[K].