• Title/Summary/Keyword: light wavelength

Search Result 1,436, Processing Time 0.034 seconds

Synthesis and Color Tuning of Poly(p-phenylenevinylene) Containing Terphenyl Units for Light Emitting Diodes

  • Jin, Young-Eup;Kim, Jin-Woo;Park, Sung-Heum;Kim, Hee-Joo;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1807-1818
    • /
    • 2005
  • New PPV based conjugated polymers, containing terphenyl units, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs). The prepared polymers, poly[2,5-bis(4-(2-etylhexyloxy)phenyl)-1,4-phenylenevinylene] (BEHP-PPV), poly[2-(2-ethylhexyloxy)-5-(4-(4-(2-etylhexyloxy)phenyl)phenyl)-1,4-phenylenevinylene] (EEPP-PPV) and poly[2-(2-ethylhexyloxy)-5-(9,9-bis(2-etylhexyl)fluorenyl)-1,4 phenylenevinylene] (EHF-PPV), were soluble in common organic solvents and used as the EL layer in double layer light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). The polymers were prepared by the Gilch reaction. The number-average molecular weight $(M_n)$, weight-average molecular weight $(M_w)$, and the polydispersities (PDI) of these polymers were in the range of 9000-58000, 27000-231000, 2.9-3.9, respectively. These polymers have quite good thermal stability with decomposition starting above 320-350. The polymers show photoluminescence (PL) with maximum peaks at around 526-562 nm (exciting wavelength, 410 nm) and blue EL with maximum peaks at around $\lambda_{max}$ = 526-552 nm. The current-voltageluminance (I-V-L) characteristics of polymers show turn-on voltages of 5 V. Even though both of EEPP-PPV and BEHP-PPV have the same terphenyl group in the repeating unit, EEPP-PPV with directly substituted alkoxy group in the back bone has longer effective conjugation length than BEHP-PPV, and exhibits red shift in the PL spectra. Both of EEPP-PPV and EHF-PPV have ter-phenyl units and directly substituted alkoxy group in back bone. EHF-PPV with fluorenyl unit attached to the PPV backbone has shorter effective conjugation length than EEPP-PPV with biphenyl unit, and exhibits blue shift in the PL spectra.

Synthesis and Luminescence Characteristics of SrGa2S4:Eu Green Phosphor for Light Emitting Diodes by Solid-State Method (고상법을 이용한 LED용 SrGa2S4:Eu 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Kim, Kyung-Nam;Park, Joung-Kyu;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.371-378
    • /
    • 2004
  • The $SrGa_2S_4:Eu^{2+}$ green emitting phosphor has been studied as a luminous device for CRT (Cathode Ray Tube) or FED (Field Emission Display) and EL (Electroluminescence). This phosphor, also, is under noticed for LED (Lighting Emitting Diode) phosphor, which makes use of excitation characteristics of long wavelength region. The $SrGa_2S_4:Eu^{2+}$ phosphor was prepared generally conventional synthesis method using flux. However, this method needs high heat-treated temperature, long reaction time, complex process and harmful $H_2S$or $CS_2$ gas. In this works, therefore, we have synthesized $SrGa_2S_4:Eu^{2+}$ using SrS, $Ga_2S_3$, and EuS as starting materials, and the mixture gas of 5% H2/95% N2 was used to avoid the $H_2S$or $CS_2$. We investigated the luminescence characteristic of $SrGa_2S_4:Eu^{2+}$ phosphor prepared in various synthesis conditions, performed post-treatment and sieving process for application to LED.

Inactivation of Candida albicans Biofilm by Radachlorin-Mediated Photodynamic Therapy (라다클로린으로 매개된 광역학치료에 의한 백색 캔디다 바이오필름의 비활성)

  • Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.273-278
    • /
    • 2015
  • The purpose of this study was to evaluate the in-vitro efficacy of PDT using red light emitting diode (LED) with Radachlorin for biofilm inhibition of clinical Candida albicans isolates. The suspensions containing C. albicans at $9{\times}10^8CFU/mL$ were prepared on yeast nitrogen base containing 5% glucose. The biofilm formation was grown for 3 h after seeding suspensions each 100 ul on a 96-well plate and then supernatant was discarded. Each well was treated with $0.39{\mu}g/mL$ from $50{\mu}g/mL$ concentrations of Radachlorin on adherent biofilm. After a 30-minute incubation, light was irradiated for 30, 60, or 90 minutes using the following light source of wavelength 630 nm LED, at energy densities of 14, 29, and $43J/cm^2$. Afterwards, all supernatant was removed and dried. Adherent cells were stained with safranin O and dried. The cell viability was measured using a microplate reader at 490 nm. Also, a fluorescent signal on C. albicans was observed by saturation of a photosensitizer. In conclusion, a significant inhibition of 72.5% was observed to C. albicans on biofilm at the Radachlorin dose of $50{\mu}g/mL$ with 630 nm LED. The Photosensitizer (Radachlorin) was adequate at 30 minuttes for C. albicans. Overall, the results showed that inhibition of biofilm formation was Radachlorine dose-dependent. The results suggest that PDT, using Radachlorin with 630 nm LED, is able to decrease biofilm formation of C. albicans.

Fiber-optic Goniometer to Measure Knee Joint Angle for the Diagnosis of Gait Disturbance (보행장애 진단을 위한 무릎관절 각도 측정용 광섬유 각도센서)

  • Kim, S.G.;Shin, S.H.;Jeon, D.;Hong, S.H.;Sim, H.I.;Jang, K.W.;Yoo, W.J.;Lee, B.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1009-1013
    • /
    • 2013
  • In this study, we developed a fiber-optic goniometer for the continuous measurement of knee joint angle which provides important medical information on Alzheimer's disease. The fiber-optic goniometer is composed of a light-emitting diode (LED), a plastic optical fiber (POF), and a voltage output photodiode (PD). As a sensing part of the fiber-optic goniometer, a unclad fiber with regular intervals of 1 mm was fabricated to improve efficiency of bending loss according to the angle variation of knee joint. The emitting light with a center wavelength of 470 nm from a LED is guided by a POF to the PD, the transmitted light is then attenuated by the bending loss inside the bent POF. The intensity variation of the light transmitted from the POF gives rise to a change in output voltage in the fiber-optic goniometer. Therefore, we measured the real-time output voltage of the proposed fiber-optic goniometer using the unclad fiber according to the knee joint angle. Through the repeated experiments, the fiber-optic goniometer shows that it has a reversibility and a wide measurable angle range.

A Study on Optical Coherence Tomography System by Using the Optical Fiber (광섬유를 이용한 광영상단층촬영기 제작에 관한 연구)

  • 양승국;박양하;장원석;오상기;이석정;김기문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, we have studied the OCT(Optical Coherence Tomography) system which has been advantages of high resolution, 2-D cross-sectional images, low cost and small size configuration. The characteristics of light source determine the resolution and coherence length. The light source has a commercial SLD with a central wavelength of 1,285 ill11, 35.3 nm(FWHM). The optical delay line is necessary to make equal with the optical path length to scattered light or reflected light from a sample. In order to make equal the optical path length, the stage that is attached to a reference mirror is controled by a step motor. And the interferometer is configured with the Michelson interferometer by using a single mode fiber, and the scanner can be focused on the sample by using a reference ann Also, the 2-dimension cross-sectional images were measured with scanning the transverse direction of the sample by using a step motor. After detecting the internal signal of lateral direction, a scanner is moved to obtain the cross-sectional image of 2-dimension by using step motor. A photodiode, which has high detection sensitivity and excellent noise characteristics has been used. The detected small signal has a noise and interference. After filtering and amplifying the signal, the output signal is demodulated the waveform And then, a cross-sectional image is seen through converting this signal into a digitalized signal by using an AID converter. The resolution of the sample is about 30${\mu}{\textrm}{m}$, which corresponds to the theoretical resolution. Also, the cross-sectional images of onion cells were measured in real time scheme.

An Experimental Study on the Optical Separation of Highly Concentrated Sunlight (Hot mirror를 이용한 고밀도 태양광의 광분리에 관한 기초실험 연구)

  • Kim, Yeongmin;Mo, Yonghyun;Shin, Sangwoong;Oh, Seungjin;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2014
  • Highly concentrated sunlight obtained from a solar concentrator mounted on a solar tracker can be divided into the infrared and visible region before it is actually applied. That is, solar rays are directed toward a unit optically separating sunlight into the infrared and visible region by a hot mirror as they impinge on the surface of a secondary reflector. The Infrared rays can be utilized for thermoacoustic applications while visible rays can be utilized for indoor lighting. This work introduces the separation of two different kinds of light; sunlight and artificial light. As for the artificial light, its wavelength extended from 400m to 720m for the visible region and 620m to 940m for the infrared region. Comparatively, a series of tests performed on sunlight revealed its separation in the visible region from 460m to 680m whereas from 620m to 940m for the artificial light.

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF) (침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석)

  • Choi, Jaeyeong;Kim, Do-Gyun;Jung, Euo Chang;Kwen, HaiDoo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.

Compensation Characteristics of Distorted Channels in 200 Gbps WDM Systems using Mid-Span Spectral Inversion Method (200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성)

  • 이성렬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.845-854
    • /
    • 2003
  • In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Ken effect in 1,000 km 200 Gbps(5${\times}$40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty(EOP), bit error rate(BER) characteristics and power penalty of 10$\^$-9/ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC fur wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.

Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates (ITO/Glass 기판위에 PFO-poss 유기 발광층을 가지는 고분자 발광다이오드의 제작)

  • Yoo, Jae-Hyouk;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) with ITO/EDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by the spin coating method on ITO(indium tin oxide)/glass substrates. PFO-poss[Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with poss] was used as light emitting polymer. PVK[poly(N-vinyl carbazole)] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)] polymers were used as the hole injection and transport materials. The effect of PFO-poss concentration and the heating temperatures on the electrical and optical properties of the devices were investigated. At the same concentration of PFO-poss solution, the current density and luminance of PLED device tend to increase as the annealing temperature increase from $100^{\circ}C$ to $200^{\circ}C$. The maximum luminance was found to be about 958 cd/m2 at 13V for the PLED device with 1.0 wt% PFO-poss at the annealing temperature of $200^{\circ}C$. In addition, the PLED device showed bluish white emission through the strong greenish peak with 523 nm in wavelength. As the concentration of PFO-poss increase from 0.5 wt% to 1.0 wt% and temperature of PLEDs increase from $100^{\circ}C$ to $200^{\circ}C$, the emission color tend to be shifted from blue with (x, y) = (0.17,0.14) to bluish white with (x, y) : (0.29,0.41) in CIE color coordinate.

  • PDF

Effect of Surface Morphology in ZnO:Al/Ag Back Reflectors for Flexible Silicon Thin Film Solar Cells on Light Scattering Properties (플렉서블 실리콘 박막 태양전지용 ZnO:Al/Ag 후면반사막의 표면형상에 따른 광산란 특성 변화)

  • Beak, Sang-Hun;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyung-Hoon;Wang, Jin-Suk;Lee, Hi-Deok;Cho, Jun-Sik
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.501-507
    • /
    • 2010
  • Changes in surface morphology and roughness of dc sputtered ZnO:Al/Ag back reflectors by varying the deposition temperature and their influence on the performance of flexible silicon thin film solar cells were systematically investigated. By increasing the deposition temperature from $25^{\circ}C$ to $500^{\circ}C$, the grain size of Ag thin films increased from 100 nm to 1000 nm and the grain size distribution became irregular, which resulted in an increment of surface roughness from 6.6 nm to 46.6 nm. Even after the 100 nm thick ZnO:Al film deposition, the surface morphology and roughness of the ZnO:Al/Ag double structured back reflectors were the same as those of the Ag layers, meaning that the ZnO:Al films were deposited conformally on the Ag films without unnecessary changes in the surfacefeatures. The diffused reflectance of the back reflectors improved significantly with the increasing grain size and surface roughness of the Ag films, and in particular, an enhanced diffused reflectance in the long wavelength over 800 nm was observed in the Ag back reflectors deposited at $500^{\circ}C$, which had an irregular grain size distribution of 200-1000 nm and large surface roughness. The improved light scattering properties on the rough ZnO:Al/Ag back reflector surfaces led to an increase of light trapping in the solar cells, and this resulted in a noticeable improvement in the $J_{sc}$ values from 9.94 mA/$cm^2$ for the flat Ag back reflector at $25^{\circ}C$ to 13.36 mA/$cm^2$ for the rough one at $500^{\circ}C$. A conversion efficiency of 7.60% ($V_{oc}$ = 0.93, $J_{sc}$ = 13.36 mA/$cm^2$, FF = 61%) was achieved in the flexible silicon thin film solar cells at this moment.