• Title/Summary/Keyword: light scanner

Search Result 139, Processing Time 0.022 seconds

Application of 3-D Scanner to Analysis of Functional Instability of the Ankle

  • Han, Cheng-Chun;Kubo, Masakazu;Matsusaka, Nobuou;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1971-1975
    • /
    • 2003
  • This paper describes a technique, which analyzes the functional instability of the ankle using three-dimensional scanner. The technique is based on the structured light pattern projection method, which is performed by using one digital still camera and one LCD projector. This system can be easily realized with the low cost. The measuring result has high accuracy. The measuring error is about 0.2 mm or less. Using this technique the three-dimensional posture of the leg and foot of the target person are measured and analyzed.

  • PDF

The Improvement of Blur Phenomenon at Laser Beam Scanner (레이저 빔 스캔 시스템의 Blur현상 개선)

  • Roh, Jin Ki;Kim, Hye Jin;Kim, Kab Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1281-1285
    • /
    • 2014
  • Recently, as the wide spread of smart phone, pico projector which is used at the smart phone is appeared as a portable display device. In this paper, among several pico projectors, laser beam scanner module is dealt with in which laser is used as light source, and mems-mirror is used as optical panel. In this device, screen image quality is a special issue, and blur effect is a typical adverse effect to the quality of this device. So the enhancement of this blur effect has an important factor of the quality of the device. The definition of the blur and the main source of the blur are studied and the simulation results and way of improvement are also suggested.

A Development of a Portable Color Scanner Using Photo Sensors for Full-Color LED Illumination Control (LED 조명 제어를 위한 컬러센서 기반 포터블 스캐너 개발)

  • Chun, Sung-Yong;Lee, Chan-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.14-25
    • /
    • 2011
  • Full-Color LED lighting system requires efficient control of the lighting color in order to easily achieve various color effects. In this paper, we present not only a portable color scanner using color sensors which can control lighting color directly from detected color but also methods to convert detected color to a complementary color, similar colors and so on. In addition, we propose a compensation method for measured sensor color to reduce measurement errors more than 50[%] in detected color. The developed color scanner is applied to control full-color LED ceiling light for emotional lighting.

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

Color Correction Using Back Propagation Neural Network in Film Scanner (필름 스캐너에서 역전파 신경회로망을 이용한 색 보정)

  • 홍승범;백중환
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • A film scanner is one of the input devices for ac acquiring high resolution and high qualify of digital images from the existing optical film. Recently the demand of film scanners have risen for experts of image printing and editing fields. However, due to the nonlinear characteristic of light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction for the scanned digital image is essential in film scanner. In this paper, neural network method is applied for the color correction to CIE L/sup *//a/sup *//b/sup */ color model data converted from RGB color model data. Also a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi is implemented by using the TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color correction rate is 79.8%, which is an improvement of 43.5% than our previous method, polygonal regression method.

  • PDF

Color Correction Using Polynomial Regression in Film Scanner (다항회귀를 이용한 필름 스캐너에서의 색보정)

  • 김태현;백중환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • Today, the demand of image acquisition systems grows as the multimedia applications go on increasing greatly. Among the systems, film scanner is one of the systems, which can acquire high quality and high resolution images. However due to the nonlinear characteristic of the light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction mr the scanned digital image is essential in the film scanner. In this paper, polynomial regression method is applied for the color correction to CIE $L^{*}$ $a^{*}$ $b^{*}$ color model data converted from RGB color model data. A1so a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi was implemented by using TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color difference ($\Delta$ $E^{*}$$_{ab}$ ) is reduced from13.48 to 8.46.6.6.6.6.

Characteristics of CCD Based Optical CT Scanner for Therapeutic Radiation Dosimetry (치료방사선량평가를 위한 CCD 기반 광학컴퓨터단층촬영 스캐너의 특성)

  • Lee, Jae Choon;Kim, Ae Ran;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.72-78
    • /
    • 2016
  • A CCD camera and an LED light source were combined to fabricate a compact optical CT scanner for the therapeutic radiation dose evaluation of a polymer gel dosimeter. After the collimated beam emitted by the LED passed through aquarium, gel phantom, and telecentric lens, an image was collected by the CCD camera and reconstructed using MATLAB. By using a stepping motor and LabVIEW, the gel dosimeter was rotated at every $0.72^{\circ}$, and the time for collecting 500 slice images per a revolution was within 20 min. At a spatial frequency of 4.5 lp/mm of the optical CT scanner, the modulation transfer function value was 72%. The linear correlation coefficient of the optical CT scanner for the polymer gel dosimeter was 0.987.

Design of Face Recognition Algorithm based Optimized pRBFNNs Using Three-dimensional Scanner (최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘 설계)

  • Ma, Chang-Min;Yoo, Sung-Hoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.748-753
    • /
    • 2012
  • In this paper, Face recognition algorithm is designed based on optimized pRBFNNs pattern classifier using three-dimensional scanner. Generally two-dimensional image-based face recognition system enables us to extract the facial features using gray-level of images. The environmental variation parameters such as natural sunlight, artificial light and face pose lead to the deterioration of the performance of the system. In this paper, the proposed face recognition algorithm is designed by using three-dimensional scanner to overcome the drawback of two-dimensional face recognition system. First face shape is scanned using three-dimensional scanner and then the pose of scanned face is converted to front image through pose compensation process. Secondly, data with face depth is extracted using point signature method. Finally, the recognition performance is confirmed by using the optimized pRBFNNs for solving high-dimensional pattern recognition problems.

Accuracy and precision of integumental linear dimensions in a three-dimensional facial imaging system

  • Kim, Soo-Hwan;Jung, Woo-Young;Seo, Yu-Jin;Kim, Kyung-A;Park, Ki-Ho;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.105-112
    • /
    • 2015
  • Objective: A recently developed facial scanning method uses three-dimensional (3D) surface imaging with a light-emitting diode. Such scanning enables surface data to be captured in high-resolution color and at relatively fast speeds. The purpose of this study was to evaluate the accuracy and precision of 3D images obtained using the Morpheus 3D$^{(R)}$ scanner (Morpheus Co., Seoul, Korea). Methods: The sample comprised 30 subjects aged 24.34 years (mean $29.0{\pm}2.5$ years). To test the correlation between direct and 3D image measurements, 21 landmarks were labeled on the face of each subject. Sixteen direct measurements were obtained twice using digital calipers; the same measurements were then made on two sets of 3D facial images. The mean values of measurements obtained from both methods were compared. To investigate the precision, a comparison was made between two sets of measurements taken with each method. Results: When comparing the variables from both methods, five of the 16 possible anthropometric variables were found to be significantly different. However, in 12 of the 16 cases, the mean difference was under 1 mm. The average value of the differences for all variables was 0.75 mm. Precision was high in both methods, with error magnitudes under 0.5 mm. Conclusions: 3D scanning images have high levels of precision and fairly good congruence with traditional anthropometry methods, with mean differences of less than 1 mm. 3D surface imaging using the Morpheus 3D$^{(R)}$ scanner is therefore a clinically acceptable method of recording facial integumental data.

Three-dimensional assessment of upper lip positional changes according to simulated maxillary anterior tooth movements by white light scanning

  • Kim, Hwee-Ho;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Sang-Min
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.281-293
    • /
    • 2014
  • Objective: Esthetic improvements during orthodontic treatment are achieved by changes in positions of the lips and surrounding soft tissues. Facial soft-tissue movement has already been two-dimensionally evaluated by cephalometry. In this study, we aimed to three-dimensionally assess positional changes of the adult upper lip according to simulated maxillary anterior tooth movements by white light scanning. Methods: We measured changes in three-dimensional coordinates of labial landmarks in relation to maxillary incisor movements of normal adults simulated with films of varying thickness by using a white light scanner. Results: With increasing protraction, the upper lip moved forward and significantly upward. Labial movement was limited by the surrounding soft tissues. The extent of movement above the vermilion border was slightly less than half that of the teeth, showing strong correlation. Most changes were concentrated in the depression above the upper vermilion border. Labial movement toward the nose was reduced significantly. Conclusions: After adequately controlling several variables and using white light scanning with high reproducibility and accuracy, the coefficient of determination showed moderate values (0.40-0.77) and significant changes could be determined. This method would be useful to predict soft-tissue positional changes according to tooth movements.