• 제목/요약/키워드: light harvesting chlorophyll protein

검색결과 26건 처리시간 0.017초

인삼 Light Harvesting Chlorophyll Protein의 특성 및 엽소병에서 Singlet Oxygen($^1O_2$) Quenching (Characteristics of Light Harvesting Chlorophyll-Protein Complex and Singlet Oxygen ($^1O_2$) Quenching in Leaf-burning Disease from Panax ginseng C. A. Meyer)

  • 양덕조;이성택
    • Journal of Ginseng Research
    • /
    • 제13권2호
    • /
    • pp.158-164
    • /
    • 1989
  • 인삼엽소병(leaf-burning disease) 원인과 light-harvesting chlorophyll-protein(LHCP) complex의 solar energy 분배능력과의 상호 연관성을 조사하기 위한 기초 연구로써 인삼 thylakoid의 chlorophyll-protein(CP) complex의 조성 및 특징을 조사하였다. 인삼의 CP-complex는 non-denaturing SDS-PAGE 방법에 의해 4개 bands로 분리되었으며 각 band는 Bassi와 Dunahay의 결과에 따라 CPI(PSI의 reaction center와 LHCP I antennae), CP I(PSI reaction center), LHCP II(LHCP II)의 oligoform), 그리고 LHCP II(PS II antennae; CP29, CP26)로 확인되었다. 인삼의 LHCP II 는 양지식물인 spinach, soybean과 비교해 볼 때 오히려 인삼의 band intensity가 더 높았으며, CP I band는 인삼에서만 분리되었다. 인삼 CP-complex band의 absorption 및 fluorescence spectra, chlorophyll a.b ratio 에서도 비교식물과 차이를 나타내었다. Thylakoid membrane의 polypeptide 함량은 인삼에서 비교식물에 비해 현저히 낮은 polypeptide 함량은을 나타내었다. SDS-PAGE에 의한 polypeptide pattern은 band의 수나 band intensity에서 비교식물과 차이를 나타내었으며, 특히 29-35 kD, 55 kD과 60 kD 근치에서 현저한 band intensity 차이를 확인하였다. Specific $^1O_2$에 의해 chl. a가 60%, chl.b는 90%, 그리고 carotenoid는 70%가 파괴되는 것으로 확인되었다.

  • PDF

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Dong-Hee Lee;Jun
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.69-80
    • /
    • 1992
  • Effects of light on leaf senescence of Phseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll- protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Cores was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Lee Dong-Hee;Hong Jung-Hee;Kim Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권2호
    • /
    • pp.69-80
    • /
    • 1997
  • Effects of light on leaf senescence of Phaseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll-protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Core3 was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF

태양에너지를 채취하는 색소단백질들의 분자 토포그라피와 에너지전달현상 (Molecular Topography and Energy Transfer in Solar Energy Harvesting Pigment Proteins)

  • 송필순;정진
    • Applied Biological Chemistry
    • /
    • 제23권1호
    • /
    • pp.73-83
    • /
    • 1980
  • 디노프라젤레이트(dinoflagellate)들의 광채취색소단백질들은 안데나색소복합체들 내에서 카로테노이드(페리디닌)로부터 크로필 a로 실질적으로 100%의 효율을 갖는 에너지전달현상을 보여준다. 이와같이 디노프라젤레이트에서 광합성을 위한 태양에너지의 채취가 (특히 청(靑)색광에서) 높은 효율로 일어나는 것은 단백질표면의 갈라진 틈안에 위치한 페리디닌과 프로로필 a의 독특한 분자배치에 기인하는 것이다. 고등식물에서 가로테노이드와 크로로필 a 사이에 일어나는 에너지 전달메카니즘에 관해서도 디노프라젤레이트 안데나 색소복합체들과 비교해서 고찰하였다. Algae에서 광합성을 위한 태양에너지, 특히 적(赤)색광의 채취를 다룬 하나의 예로서 Chroomonas Species의 보조광합성색소단백질인 크로오오 모나스 피코시아닌의 분자토포그라피와 에너지전달도 역시 고찰하였다.

  • PDF

고려인삼 광계 II Chlorophyll a/b binding Protein 유전자(CAB)의 cloning 및 식물에의 활용연구 (Cloning of CAB cDNA encoding chlorophyll a/b binding protein of photosystem II in Korean ginseng and Use in Plant)

  • 김갑식;이기원;이종철;여운형;채순용;박은경
    • 한국연초학회지
    • /
    • 제21권2호
    • /
    • pp.152-159
    • /
    • 1999
  • A CAB cDNA clone(pKGCAB) encoding the light harvesting chlorophyll a/b binding protein of the semi-shade plant, Korean ginseng(Panax ginseng C. A. Meyer) was isolated by the one-way path random sequencing of ginseng cDNA library clones and transgenic tobacco plants(Nicotiana tabacum NC82) were produced by the transformation of this ginseng CAB gene in use of Agrobacterium tumefaciens LBA4404. The CAB gene showed type 1 structure of LHCP-II, 84% similarity in nucleotide sequence and 92% in amino acid sequence to that of Nicotiana tabacum CAB40, respectively. Seed germination and initial growth of the transgenic tobacco plants transformed with the cDNA fragment were accelerated under low light intensity compared with those of normal tobacco plant, that may result from the higher light sensitivity of the transgenic plants than that of the normal.

  • PDF

Greening에 따른 유채 자엽의 엽록소-단백질 복합체 형성 (Formation of Chlorophyll-Protein Complexes in Greening Rape Cotyledons)

  • 이진범
    • Journal of Plant Biology
    • /
    • 제26권2호
    • /
    • pp.91-99
    • /
    • 1983
  • The formation of chlorophyll-protein complexes (CP-complexes) during the greening of rape cotyledons (Brassica napus cv. Yongdang) was investigated by the SDS-polyacrylamide gel electrophoresis. The total chlorophyll content and Chl a/b ratio were also determined. In addition, the effects of dark treatment on the CP-complex patterns during greening have been examined with respect to their photosynthetic electron transport activity. Greening has brought about the increasein total chlorophyll content and the decrease in Chl a/b ratio, but there have been no changes in Chl a/b ratio after 24 hrs of greening. The light-harvesting chlorophyll a/b-protein complex (LHCP-complex0 was predominant during the initial greening period. Thereafter, the amout of chlorophyll a-protein complex (CP I-complex) was gradually increased. Twenty-four-hr dark treatment immediately after illumination for 6 hrs and 12 hrs resulted in the increase of the Chl a/b ration and the CP I complex, otherwise the decrease of the LHCP-complex. The LHCP/CP I ratio was gradually decreased with further greening, and appeared no change after 48 hrs illumination. The investigation of the photosynthetic electron transport activity indicated that photosystem (PS) II activity (H2Olongrightarrowp-PD*+FeCy**) did not change, but the activity of PS I was increased suddenly due to the dark treatment. The data suggests that the increase of CP I-complex may result in that of P-700, that is, the increase of PS I activity.

  • PDF

Characterization of the Gene for the Light-Harvesting Peridinin-Chlorophyll-Protein of Alexandrium tamarense

  • LEE SOON-YOUL;KANG SUNG-HO;JIN EONSEON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1094-1099
    • /
    • 2005
  • Photosynthetic dinoflagellates contain a water-soluble, light-harvesting antenna called the peridinin-chlorophyll-protein (PCP) complex, which has an apoprotein with no sequence similarity to other known proteins. There are two forms of PCP apoproteins; the 15-kDa short form and the 32- to 35­kDa long form. The present study describes the PCP protein and its cDNA from Alexandrium tamarense. A cDNA library was constructed from mRNA isolated from A. tamarense. The complete PCP cDNA was generated by reverse-transcription coupled to polymerase chain reaction (RT-PCR), together with rapid-amplification of cDNA ends (RACE). The A. tamarense PCP cDNA encoded a 55-amino acid signal peptide and a 313-amino acid mature protein with a calculated mass of 32 kDa, which corresponded to that of the long form of PCP. Phylogenetic analysis indicated that the sequence of A. tamarense PCP did not cluster with the short-form PCPs, to which it was only about $55\%$ identical, but which were $79-83\%$ identical to other long-form PCPs. The deduced amino acid sequence of A. tamarense PCP contains an internal duplication, which suggests the possibility that long-form PCPs arose by gene duplication or by the fusion of genes encoding the short form. The abundance of PCP mRNA changed substantially in response to different light conditions, indicating the possible existence of a photo-acclimation response in A. tamarense.

녹화중인 녹두 자엽의 엽록소-단백질 복합체 및 색소체막 단백질의 변화에 미치는 Spermine의 효과 (Effects of Spermine on Changes in Chlorophyll-Protein Complexes and Plastic Membrane Proteins of Mung Bean Cotyledons during Greening)

  • 홍정희;박흥덕
    • 한국환경과학회지
    • /
    • 제4권4호
    • /
    • pp.335-344
    • /
    • 1995
  • Spermine이 녹화중인 녹두자엽의 엽록소-단백질 복합체(CPs) 및 틸라코이드막 단백질의 변화에 미치는 효과를 조사하였다. 녹화가 진행됨에 따라 Cps형성이 촉진되었으며, 특히 광계의 엽록소-단백질(CP I)이 다량 추척되었다. 광수화 엽록소 단백질(LHCP)은 48시간의 초기 녹화과정에서 중요한 단백질로 나타났다.Spermine처리는 초기녹화과정에서 틸라코이드막의 CPs 축척에 효과적이었다. 색소체막 단백질은 녹화과정에서 많은 변화를 나타내었는데, 56kD단백질은 전 엽록체체서 다량 관찰되었꼬 24kD 단백질은 전 처리구에서 뚜렷한 증가를 보여주었다.Spermine처리에 의해 틸라코이드막 단백질 형성은 대조구에 비해 다소 증가되었다. 이러한 결과들로부터 spermine은 녹화과정에서 색소체의 발달과 색소체막의 안정화에 중요한 작용을 하는 것으로 생각된다.

  • PDF

녹화중인 녹두 자엽의 엽록소-단백질 복합체 및 색소체막 단백질의 변화에 미치는 Spermine의 효과 (Effects of Spermine on Changes in Chlorophyll-Protein Complexes and Plastic Membrane Proteins of Mung Bean Cotyledons during Greening)

  • 홍정희;박흥덕
    • 한국환경과학회지
    • /
    • 제4권4호
    • /
    • pp.33-33
    • /
    • 1995
  • Spermine이 녹화중인 녹두자엽의 엽록소-단백질 복합체(CPs) 및 틸라코이드막 단백질의 변화에 미치는 효과를 조사하였다. 녹화가 진행됨에 따라 Cps형성이 촉진되었으며, 특히 광계의 엽록소-단백질(CP I)이 다량 추척되었다. 광수화 엽록소 단백질(LHCP)은 48시간의 초기 녹화과정에서 중요한 단백질로 나타났다.Spermine처리는 초기녹화과정에서 틸라코이드막의 CPs 축척에 효과적이었다. 색소체막 단백질은 녹화과정에서 많은 변화를 나타내었는데, 56kD단백질은 전 엽록체체서 다량 관찰되었꼬 24kD 단백질은 전 처리구에서 뚜렷한 증가를 보여주었다.Spermine처리에 의해 틸라코이드막 단백질 형성은 대조구에 비해 다소 증가되었다. 이러한 결과들로부터 spermine은 녹화과정에서 색소체의 발달과 색소체막의 안정화에 중요한 작용을 하는 것으로 생각된다.

인삼의 Chlorophyll a/b Binding Protein유전자를 도입한 연초의 광합성 특성 (Photosynthetic Characterization of Transgenic Tobacco Plant, by Transformation of Chlorophyll a/b Binding Protein Gene of Korean Ginseng)

  • 이기원;채순용;김갑식;박성원;황혜연;이영복
    • 한국연초학회지
    • /
    • 제23권2호
    • /
    • pp.109-114
    • /
    • 2001
  • A CAB cDNA vector(pKGCAB), encoding the light harvesting chlorophyll a/b binding protein in Korean ginseng (Panax ginseng C. A. Meyer), was constructed with the CaMV35S promoter of plant expression vector. The chimeric vector was transformed into tobacco(Nicotiana tabacum cv. NC 82) using Agrobacterium tumefaciens LBA 4404 strain, and the transgenic tobacco plant CAB-TP2 was selected. Photosynthetic rates of the CAB-TP2 plant at before-flowering stage were increased about 20% under low irradiance conditions of quantum 100 and 500 $\mu$mol.m$^{-2}$ s$^{-1}$ , however, the rates were similar to those of NC 82 under quantum 1000 and 2000 $\mu$mol.m$^{-2}$ s$^{-1}$ conditions. The plants were germinating under low- or normal irradiance condition and the quantum yield of photosystem III were measured. The differences of the Fv/Em values between conditions were 0.07 and 0.01 in NC 82 and CAB-TP2, respectively. The mature leaves in the position 8-10 of the CAB-TP2 at before-flowering stage revealed l0% higher Fv/Fm values in range of 0.759 to 0.781 and 40% more chlorophyll contents of 70-93mg/$m\ell$ than those of normal NC 82. These data suggest the possibility that the increase in photosynthetic activity of leaves under low light intensity in the canopy of CAB-TP2 transgenic tobacco might lead to increase the quality of lower tobacco leaves.

  • PDF