• Title/Summary/Keyword: light emitting transistor

Search Result 81, Processing Time 0.026 seconds

Characteristics of vertical type organic light emitting transistor using $C_{60}$ as a N-type semiconductor material and MEH-PPV as an emitting polymer

  • Lee, Jung-Bae;Jin, Hee-Suk;Oh, Se-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.443-445
    • /
    • 2008
  • We have fabricated vertical type organic thin film transistor using $C_{60}$ as a n-type active material to improve the problems of conventional OTFTs. In general, it can be argued that the characteristics of organic transistor were influenced by carrier mobility and density. We have used several kinds of metals as source and gate electrodes to optimize the device characteristics using $C_{60}$. In addition, we have examined the feasibility of fabrication of organic light-emitting transistor (OLET) using MEH-PPV as an emission layer.

  • PDF

Ambipoalr light-emitting organic field-effect transistor using a wide-band-gap blue-emitting molecule

  • Sakanoue, Tomo;Yahiro, Masayuki;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.137-140
    • /
    • 2007
  • We prepared ambipolar organic field-effect transistors and observed blue emission when both hole and electron accumulation layers were in the channel. We found that the reduction of carrier traps and controlling devices' preparation and measurement conditions were crucial for ambipolar operation.

  • PDF

Characteristics and Fabrication of Vertical Type Organic Light Emitting Transistors Using n-Type Organic Materials (N형 유기물질을 이용한 세로형 유기 발광트랜지스터의 제작 및 특성에 관한 연구)

  • Oh Se-Young;Kim Hee-Jeong;Jang Kyoung-Mi
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.253-258
    • /
    • 2006
  • We have fabricated vortical type organic thin film transistors (OTFTs) consisting of ITO/n type active material/Al gate/n type active material/Al using F16CuPc, NTCDA, PTCDA and PTCDI C-8. The effect of mobility of n type active materials and thin film thickness on current-voltage (I-V) characteristics and on/off ratios were investigated. The vortical type organic transistor using PTCDI C-8 exhibited low operation voltage and high on-off ratio. In addition, we have investigated the feasibility of application in organic light emitting transistor using light emitting polymer. Especially, the light emitting transistor consisting of ITO/PEDOT-PSS/P3HT/F16CuPc/Al gate/F16CuPc/Al showed the maximum quantum efficiency of 0.054.

Simulation of the light emission from quantum-well based heterojunction bipolar transistors

  • Park, Yeong-Gyu;Park, Mun-Ho;Kim, Gwang-Ung;Park, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.52-52
    • /
    • 2009
  • In this work, we demonstrate the modelling and simulation of the AlGaAs/GaAs quantum-well based light emitting transistor(LET). Based on the experimental and theoretical model, we have compared between a heterojunction bipolar transistor(HBT) structure with quantum wells in the base region and a HBT without quantum wells in the base region. For the purpose of optimizing device design, several analytic and numerical studies have been presented.

  • PDF

Organic Light Emitting Transistors for Flexible Displays

  • Kudo, Kazuhiro;Endoh, Hiroyuki;Watanabe, Yasuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.137-140
    • /
    • 2005
  • Organic light emitting transistors (OLET) which are vertically combined with the organic static induction transistor (OSIT) and organic light emitting diode (OLED) are fabricated and the device characteristics are investigated. High luminance modulations by relatively low gate voltages are obtained. In order to realize the flexible electronic circuits and displays, we have fabricated OSIT on plastic substrates. The OSIT fabricated on plastic substrate show almost same characteristics comparing with those of nonflexible OSIT on glass substrate. The OLET described here is a suitable element for flexible sheet displays.

  • PDF

Voltage Feedback AMOLED Display Driving Circuit for Driving TFT Deviation Compensation (구동 TFT 편차 보상을 위한 전압 피드백 AMOLED 디스플레이 구동 회로)

  • Ki Sung Sohn;Yong Soo Cho;Sang Hee Son
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.161-165
    • /
    • 2023
  • This paper designed a voltage feedback driving circuit to compensate for the characteristic deviation of the Active Matrix Organic Light Emitting Diode driving Thin Film Transistor. This paper describes a stable and fast circuit by applying charge sharing and polar stabilization methods. A 12-inch Organic Light Emitting Diode with a Double Wide Ultra eXtended Graphics Array resolution creates a screen distortion problem for line parasitism, and charge sharing and polar stabilization structures were applied to solve the problem. By applying Charge Sharing, all data lines are shorted at the same time and quickly positioned as the average voltage to advance the compensated change time of the gate voltage in the next operation period. A buffer circuit and a current pass circuit were added to lower the Amplifier resistance connected to the line as a polar stabilization method. The advantage of suppressing the Ringing of the driving Thin Film Transistor can be obtained by increasing the stability. As a result, a circuit was designed to supply a stable current to the Organic Light Emitting Diode even if the characteristic deviation of the driving Thin Film Transistor occurs.

  • PDF

Vertical Type Organic Transistors and Flexible Display Applications

  • Kudo, Kazuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.168-169
    • /
    • 2007
  • Organic transistors are promising in the future development of active devices for flexible, low-cost and large-area photoelectric devices. However, conventional organic field-effect transistors have lowspeed, low-power, and relatively high operational voltage. Vertical type transistors show high-speed and high-current characteristics and are suitable for driver elements of flexible displays.

  • PDF

Array of Pentacene TFTs for AMOLED

  • Choe, Ki-Beom;Jung, Hyun;Ryu, Gi-Seong;Xu, Yong-Xian;Lee, Jae-June;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1424-1427
    • /
    • 2005
  • In this paper, we studied on the application of Organic Thin Film Transistors (OTFTs) to the active matrix organic light emitting diodes (AMOLED). We designed organic transistor based pixel circuits for AMOLED. The pixel circuit is consisted of two-transistor, one-capacitor and one-OLED. We report the simulation results of the pixel circuits that OLED current varied as the data line and scan line voltage. Also, we will describe the fabrication process of the Pentacene OTFTs arrays and the organic light emitting diodes. The driving results of the fabricated unit pixels and their 4x4 arrays are also presented.

  • PDF

AMOLED Display Technologies and Recent Trends - Focusing on Flexible Display Technology - (AMOLED 디스플레이 주요 기술 및 최근 동향 - 플렉서블 디스플레이 기술 위주로 -)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Starting with cathode ray tubes, displays are forming markets in the order of active marix organic light emitting diode (AMOLED) after PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). OLED is recognized as a key field for the development of each country preparing for the fourth industrial revolution, and especially Samsung Display and LG Display, which are the top industries in Korea, are leading the market with more than 90% of OLED shares. Currently, AMOLED has moved to the area that can be folded or bent. This technology is possible because TFT (Thin Film Transistor) and OLED may be formed on a flexible substrate. In the future, the technology will move to stretchable displays, and for this, the development of substrate materials is first, and then TFT and OLED devices should also be implemented with stretchable materials.