• Title/Summary/Keyword: light emission diode(LED)

Search Result 85, Processing Time 0.031 seconds

Photon Extraction Efficiency in InGaN Light-emitting Diodes Depending on Chip Structures and Chip-mount Schemes (InGaN LED에서 칩 구조 및 칩마운트 구조에 따른 광추출효율에 관한 연구)

  • Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.275-286
    • /
    • 2005
  • The performance of the InGaN LED's in terms of the photon extraction efficiency has been analyzed by the Monte Carlo photon simulation method. Simulation results show that the sidewall slanting scheme, which works well for the AlInGaP or InGaN/SiC LED, plays a very minimal role in InGaN/sapphire LED's. In contrast to InGaN/SiC LED's, the lower refractive index sapphire substrate restricts the generated photons to enter the substrate, minimizing the chances for the photons to be deflected by the slanted sidewalls of the epitaxial semiconductor layers that are usually very thin. The limited photon transmission to the sapphire substrate also degrades the. photon extraction efficiency especially in the epitaxial-side down mount. One approach to exploit the photon extraction potential of the epitaxial-side down mount may be to texture the substrate-epitaxy interface. In this case, randomized photon deflection off the textured interface directly increases the number of the photons entering the sapphire substrate, from which they easily couple out of the chip and thereby improving the photon extraction efficiency drastically.

Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. (발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Park, Dal-Soo;Yang, Han-Soeb;Yoon, Yang-Ho;Honjo, Tsuneo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In order for bioremediate the benthic layer in polluted inner Bay, the effects of irradiance and wave-length irradiated from light emission diode (LED) on the growth of benthic diatom Nitzschia sp. (Hakozaki Bay strain of Japan) were investigated. The Nitzschia sp. was cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). At $25^{\circ}C$ and 30 psu, the growth of Nitzschia sp. showed its peak at $20\;{\mu}mol\;m^{-2}\;s^{-1}$ (blue LED) and $40\;{\mu}mol\;m^{-2}\;s^{-1}$ (fluorescent lamp), and was inhibited at the irradiance higher than that irradiance. Nitzschia sp. in yellow LED and red LED is fitted by a rectangular hyperbolic curve because no photoinhibition was observed under maximum irradiance used in this study. The irradiance-growth curves were described as ${\mu}=-0.46{\exp}(1-I/6.32)+0.46-0.00043I,\;(r^2=0.98)$ under blue LED, ${\mu}=0.42(I+7.87)/(I+58.9),\;(r^2=0.99)$ under yellow LED, ${\mu}=0.39(I+3.39)/(I+21.6),\;(r^2=0.94)$ under red LED, ${\mu}=-0.38{\exp}(1-I/7.23)+0.38-0.00016I,\;(r^2=0.96)$ under fluorescent lamp. Maximum specific growth rate of blue LED, yellow LED, red LED and fluorescent lamp was $0.44\;day^{-1},\;0.42\;day^{-1},\;0.39\;day^{-1}$ and $0.37\;day^{-1}$, respectively. The absorption coefficient ($a_{ph}$) of Nitzschia sp. was similar under all the wavelengths (400 nm-700 nm), although maximum $a_{ph}$ was $0.0224\;m^2\;mg\;chi.\;{\alpha}^{-1}$ in 472 nm and $0.0179\;m^2\;mg\;chi.\;{\alpha}^{-1}$) in 663 nm. The results may indicate the possibility of environmental improvement around the benthic layer in polluted coastal area because microphytobenthos growth is stimulated by means of irradiated blue LED at the benthic boundary layer during both autumn and winter, and yellow LED, which might have been suppressed growth of harmful algae, at the layer during both spring and summer.

  • PDF

PAPR Reduction Technique and BER Performance Improvement in OFDM-based Wireless Visible Light Communication (OFDM을 사용하는 무선 가시 광통신에서의 PAPR 저감 기법과 BER성능 개선)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.189-197
    • /
    • 2011
  • OFDM systems are much studied for the recent high speed wireless optical communication system. OFDM system has basically high PAPR and ICI easily generated because of non-linearity and RF impairments. In the wireless optical communication system, optical output power driven by current of LED is not linear so that transmission signals are distorted. Therefore, research about reception performance of this nonlinear optical output emitted by non-linear LED transfer function and OFDM signal has been conducted. Nonlinear effect of LED is different from nonlinear effect of OFDM system in the conventional radio communication system, which degrades the BER performance. In this paper, we apply non-linear transfer function of recently studied LED into OFDM system. So, for reducing the PAPR and suppressing the ICI in frequency domain of receiver, we suggest a new PAPR reduction technique to reduce non-linear distortion of LED and an adaptive ICI suppression algorithm so that BER performance may be improved. Also, the proposed method is verified through simulation results.

Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet (자외선 여기용 청색 및 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

Conjugated Copolymers by Horner-Emmons Polycondensation and Electroluminescence Characteristics

  • Park, Lee-Soon;Jeong, Seung-Won;Kim, Sang-Dae;Seo, Hyeon-Jin
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2001
  • Four types of conjugated polymers, poly(MEHPV-PV), poly(MEHPV-BPV), poly(MEHPV-AV) and poly(PZV-AV) were synthesized by Homer-Emmons reaction using potassium tert-butoxide. The Homer-Emmons reaction gave electroluminescent(EL) copolymers in good yield. Of the EL copolymers synthesized, poly(PZV-AV) containing phenothiazinylene vinylene and anthrylene vinylene as repeat unit exhibited red color in the light emitting diode(LED) which was very close to the NTSC standard red. Besides, double layer LED made with $Alq_3$ electron transport layer exhibited both enhanced emission intensity and efficiency compared to the single layer LED.

  • PDF

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Synthesis and luminescence properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors ($Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ 형광체의 합성과 발광 특성)

  • Sung, Hye-Jin;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.267-272
    • /
    • 2006
  • A series of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have been synthesized by solid-state reaction. The photoluminescence and structural properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ have been examined. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have a strong absorption at 400 nm, which is the emission wavelength of a violet light emitting diode (LED). The emission peaks of $SrGa_2S_4:Ce,Na$are located at 448 nm and 485 nm. The partial replacement of Sr by Ca in $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ causes a red shift of emission wavelengths. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ can be used as blue emitting phosphors pumped by the violet LED for fabricating the multi-band white LED.

The study of shape of electrodes and I-V characteristics for Ultraviolet LED

  • Trung, Nguyen Huu;Dang, Vu The;Hieu, Nguyen Van
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.221-228
    • /
    • 2013
  • About functional parameters of a LED/UVLED (Light Emitting Diode/Ultra Violet LED), one of the most important parameters is the I-V characteristic. By researching factors affect to the I-V characteristic of uvled, we found that beside of the structure of the device itself, there is the influence of the electrode materials, electrode shapes, the process of wiring and packaging. In this work, we want to improve the performance of UVLED to find out the optimal mask design principles. The study is based on theoretical mathematical models, as well as the use of simulation software tool Comsol. From all results obtained, the team has improved mask design to manufacture electrodes for GaN-based UVLED. Electrode masks are designed by three softwares, which are Intellisuite, Klayout and AutoCad. Intellisuite masks would be used in fabrication simulation while Klayout and AutoCad are used to fabricate electrodes in experiments. As well as, we silmulated the structure of an uvled 355nm emission wavelength by TCAD software, in order to compare with uvled sample that has the same emission wavelength.

Driving Current Control for Time-Stable RGB LED Backlighting Using Time-Varying Transform Matrix (시변 변환 행렬을 이용한 시간에 안정된 RGB LED Backlighting 구동 전류 제어)

  • Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.42-49
    • /
    • 2009
  • This paper proposes a driving current control method for a back light unit (BLU), consisting of red, green, and blue (RGB) light-emitting diodes (LEDs), whereby an RGB optical sensor is used to check the output color stimulus variation to enable a time-stable color stimulus for light emission by the RGB LED BLU. First, to obtain the present color stimulus information of the RGB LED BLU, an RGB to XYZ transform matrix is derived to enable CIEXYZ values to be calculated for the RGB LED BLU from the output values of an RGB optical sensor. The elements of the RGB to XYZ transform matrix are polynomial coefficients resulting from a polynomial regression. Next, to obtain the proper duty control values for the current supplied to the RGB LEDs, an XYZ to Duty transform matrix is derived to calculate the duty control values for the RGB LEDs from the target CIEXYZ values. The data used to derive the XYZ to Duty transform matrix are the CIEXYZ values for the RGB LED BLU estimated from the output values of the RGB optical sensor and corresponding duty control values applied to the RGB LEDs for the present, first preceding, and second preceding sequential check points. With every fixed-interval check of the color stimulus of the RGB LED BLU, the XYZ to Duty transform matrix changes adaptively according to the present lighting condition of the RGB LED BLU, thereby allowing the RGB LED BLU to emit the target color stimulus in a time-stable format regardless of changes in the lighting condition of the RGB LEDs.