• Title/Summary/Keyword: light dosimetry

Search Result 40, Processing Time 0.025 seconds

Removal of Cerenkov Light in Fiber-optic Radiation Sensor Using Optical Filters (광학 필터를 이용한 광섬유 방사선 센서의 체렌코프 빛 제거)

  • Jang, Kyoung-Won;Lee, Bong-Soo;Cho, Dong-Hyun;Kim, Hyung-Shik;Yi, Jeong-Han;Lee, Jeong-Whan;Kim, Sin;Cho, Hyo-Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2006
  • In this study, a miniature fiber-optic radiation sensor has been developed using a water-equivalent organic scintillator for electron beam therapy dosimetry. The intensity of Cerenkov light is measured and characterized as a function of the incident angle of the electron beam from a LINAC. Also, a subtraction method using a background optical fiber without a scintillator and an optical discrimination method using optical filters are investigated to remove Cerenkov light, which could cause problems or limit the accuracy for detecting a fluorescent light signal in a fiber-optic radiation sensor.

Characteristics of CCD Based Optical CT Scanner for Therapeutic Radiation Dosimetry (치료방사선량평가를 위한 CCD 기반 광학컴퓨터단층촬영 스캐너의 특성)

  • Lee, Jae Choon;Kim, Ae Ran;Ji, Young Hoon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.72-78
    • /
    • 2016
  • A CCD camera and an LED light source were combined to fabricate a compact optical CT scanner for the therapeutic radiation dose evaluation of a polymer gel dosimeter. After the collimated beam emitted by the LED passed through aquarium, gel phantom, and telecentric lens, an image was collected by the CCD camera and reconstructed using MATLAB. By using a stepping motor and LabVIEW, the gel dosimeter was rotated at every $0.72^{\circ}$, and the time for collecting 500 slice images per a revolution was within 20 min. At a spatial frequency of 4.5 lp/mm of the optical CT scanner, the modulation transfer function value was 72%. The linear correlation coefficient of the optical CT scanner for the polymer gel dosimeter was 0.987.

Measurements of relative depth dose rates for a brachytherapy Ir-192 sourceusing an organic scintillator fiber-optic radiation sensor (유기 섬광체-광섬유 방사선 센서를 이용한 근접 방사선원 Ir-192의 상대 깊이 선량율 측정)

  • Shin, Sang-Hun;Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Seo, Jeong-Ki;Lee, Bong-Soo;Moon, Joo-Hyun;Kim, Sin;Park, Byung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.462-469
    • /
    • 2008
  • In this study, we have fabricated a fiber-optic radiation sensor using an organic scintillator and plastic optical fiber for brachytherapy dosimetry. Also, we have measured relative depth dose rates of Ir-192 source using a fiber-optic sensor and compared them with the results obtained using a conventional EBT film. Cerenkov lights which can be a noise in measuring scintillating light with a fiber-optic sensor are measured and eliminated by using of a background optical fiber. It is expected that a fiber-optic radiation sensor can be used in brachytherapy dosimetry due to its advantages such as a low cost, simple usage and a small volume.

Preliminary Test of 3D Printed Plastic Scintillators for Proton Beam (3D 프린팅 플라스틱 섬광체의 양성자 빔에 대한 적용)

  • Sung-Hwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.681-686
    • /
    • 2022
  • In this study, a scintillation resin for 3D printing was fabricated with 1.0 wt% of PPO organic scintillator, 5.0 wt% of MMA, and commercial acrylic resin. Using the scintillation resin, 3D-shaped plastic scintillator radiation sensors were successfully fabricated quickly and inexpensively with a commercial 3D DLP printer. The 3D printed plastic scintillator has a good dose-output linearity of R-square 0.998 was obtained in the range of 1 to 10 nA of beam current of the 45 MeV proton beam. The developed 3D plastic scintillator has low light output, so there is a limit to its use in low-dose-rate gamma-ray or X-ray dosimetry. However, it was confirmed that the tissue equivalent material could be usefully used for measuring high energy or high dose rates radiation, such as proton beams and ultra-high dose rate beams.

Performance Analysis of Mobile Station with Built-in Antenna for PCS Band (PCS 대역용 안테나 내장형 단말기의 성능 분석)

  • Kong, Sung-Shin;Oh, Jong-Dae;Yang, Woon-Geun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.560-564
    • /
    • 2003
  • In this paper, we carried out performance analysis of mobile station with built-in antenna for PCS(Personal Communication System) band. The radiation patterns for antenna and mobile phone were simulated by using 3D simulation program, HFSS(High Frequency Structure Simulator) and SEMCAD(Simulation Platform for Electromagnetic Compatibility Antenna Design Dosimetry). We observed radiation pattern variation according to installation of LED(Light Emitting Diode) circuit and ground pattern. The radiation pattern of prototype mobile phone was measured, and the radio sensitivity was measured by using Agilent E5515C and chamber. The measured maximum antenna gain at 1.87GHz was 0.21dBi. The measured radio sensitivity of prototype mobile phone shows proper performances comparable to other models with external antennas.

  • PDF

Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories (동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석)

  • Kang, Min-Young;Lee, Bo-Ram;Kim, You-Hyun;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • The aim of the study is to analyze the dose delivery error depending on the depth variation according to target positions and arc trajectories by comparing the simulated treatment planning with the actual dose delivery in conformal arc therapy. We simulated the conformal arc treatment planning with the three target positions (center, 2.5 cm, and 5 cm in the phantom). For the experiments, IMRT body phantom (I’mRT Phantom, Wellhofer Dosimetry, Germany) was used for treatment planning with CT (Computed Tomography, Light speed 16, GE, USA). The simulated treatment plans were established by three different target positions using treatment planning system (Eclipse, ver. 6.5, VMS, Palo Alto, USA). The radiochromic film (Gafchromic EBT2, ISP, Wayne, USA) and dose analysis software (OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany) were used for the measurement of the planned arc delivery using 6 MV photon beam from linear accelerator (CL21EX, VMS, Palo Alto, USA). Gamma index (DD: 3%, DTA: 2 mm) histogram and dose profile were evaluated for a quantitative analysis. The dose distributions surrounded by targets were also compared with each plans and measurements by conformity index (CI), and homogeneity index (HI). The area covered by 100% isodose line was compared to the whole target area. The results for the 5 cm-shifted target plan show that 23.8%, 35.6%, and 37% for multiple conformal arc therapy (MCAT), single conformal arc therapy (SCAT), and multiple static beam therapy, respectively. In the 2.5 cm-shifted target plan, it was shown that 61%, 21.5%, and 14.2%, while in case of center-located target, 70.5%, 14.1%, and 36.3% for MCAT, SCAT, and multiple static beam therapy, respectively. The values were resulted by most superior in the MCAT, except the case of the 5 cm-shifted target. In the analysis of gamma index histogram, it was resulted of 37.1, 27.3, 29.2 in the SCAT, while 9.2, 8.4, 10.3 in the MCAT, for the target positions of center, shifted 2.5 cm and 5 cm, respectively. The fail proportions of the SCAT were 2.8 to 4 times as compared to those of the MCAT. In conclusion, dose delivery error could be occurred depending on the target positions and arc trajectories. Hence, if the target were located in the biased position, the accurate dose delivery could be performed through the optimization of depth according to arc trajectory.

Development of a Noble Dosimetry Using Metaphase Analysis and Micronuclei Assay of Bone Marrow Cells in Mice (마우스 골수세포의 중기염색체 분석 및 미소핵 검사를 이용한 피폭선량 평가법의 개발)

  • Min, Jung-Jun;Bom, Hee-Seung;Kim, Young-Ho;Yoon, Hyun-Joong;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.74-81
    • /
    • 2000
  • Purpose: The purpose of this study was to develop in vivo dosimetries using both chromosomal aberrations and micronuclei in mice to assess biological effects of radiations. Materials and Methods: Five each mice were irradiated with 0, 1, 2, 3, 4, 5, 10 Gy of Cs-137 gamma-rays. We scored numbers of chromosomal aberrations in metaphase spreads and numbers of micronuclei in bone marrow smears under light microscope, and obtained the dose-response relationships. We also examined the relationship between the two dose-response curves. Results: The frequency of both chromosomal aberrations and micronuclei increased with dose, in a linear-quadratic manner The delta, beta, and alpha coefficients were 0.0176, 0.0324, and 0.0567 for metaphase analysis (r=1.0, p<0.001) and 0.0019, 0.0073, and 0.0506 for micronuclei assay (r=1.0, p<0.001). The frequency of chromosomal aberrations and micronuclei in different radiation doses was significantly correlated (r=0.99, p<0.01). Conclusion: In vivo dosimetry using either metaphase analysis or micronucleus assay was feasible in mice. These methods could be useful to evaluate biological effects of radiation.

  • PDF

Qualitative Evaluation of 2D Dosimetry System for Helical Tomotherapy (2차원 토모테라피 선량측정시스템의 정성적 평가)

  • Ma, Sun Young;Jeung, Tae Sig;Shim, Jang Bo;Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • The purpose of this study is to see the feasibility of the newly developed 2D dosimetry system using phosphor screen for helical tomotherapy. The cylindrical water phantom was fabricated with phosphor screen to emit the visible light during irradiation. There are three types of virtual target, one is one spot target, another is C-shaped target, and the other is multiple targets. Each target was planned to be treated at 10 Gy by treatment planning system (TPS) of tomotherapy. The cylindrical phantom was placed on the tomotherapy table and irradiated as calculations of the TPS. Every frame which acquired by CCD camera was integrated and the doses were calculated in pixel by pixel. The dose distributions from the fluorescent images were compared with the calculated dose distribution from the TPS. The discrepancies were evaluated as gamma index for each treatment. The curve for dose rate versus pixel value was not saturated until 900 MU/min. The 2D dosimetry using the phosphor screen and the CCD camera is respected to be useful to verify the dose distribution of the tomotherapy if the linearity correction of the phosphor screen improved.

Feasibility Study of the Real-Time IMRT Dosimetry Using a Scintillation Screen (고감도 형광판을 이용한 실시간 선량측정 가능성 연구)

  • Lim Sang Wook;Yi Byong Yong;Ko Young Eun;Ji Young Hoon;Kim Jong Hoon;Ahn Seung Do;Lee Sang Wook;Shin Seong Soo;Kwon Soo-Il;Choi Eun Kyoung
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • Purpose : To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. Materials and Methods : The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom In order to capture the visible light from the scintillation screen. To observe the dose distribution In real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the Intensity modulated radiation therapy (IMRT). Results : The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Conclusion : Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.