• Title/Summary/Keyword: light density

Search Result 1,718, Processing Time 0.029 seconds

The Change of Density and Tensile Strength on Cotton with Complexed Natural Dyeing (복합 천연염색한 면직물의 밀도 및 강도 변화)

  • Youngmi Park
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.189-195
    • /
    • 2023
  • In this study, as one of the eco-friendly dyeing methods, indigo, Phellodendron amurense and Caeasapinia sappan were complexed dyed on cotton fabric. For complexed dyeing, the cotton that was pre-dyed 5 times with indigo was dyed 1 ~ 2 times repeatedly with Phellodendron amurense and Caeasapinia sappan. Then the color, tensile strength, density, and color fastness of complexed dyed sample were analyzed and the following analysis results could be obtained. As a result of color difference measurement, the L* value was 22.7 in the sample in which the cotton was dyed 5 times and then the Phellodendron amurense was dyed 1 time, and the K/S value was 15 or higher in all samples. As a result of measuring the strength, cotton fabrics tended to have a slight decrease in tensile strength when complexed dyeing. As a result of measuring the density, the density decreased by 15 ~ 20% in all samples at the warp and increased by 20 ~ 30% in the weft due to the complexed dyeing of cotton fabric. Moreover, the fastness to washing and drycleaning showed good results of 2 ~ 3 or higher, and the light fastness was 4 or higher.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Development of Program for prediction of Mid-long term Load density in region and district respectively. (지역별,관리구별 중장기 부하밀도 예측 프로그램의 개발)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.307-309
    • /
    • 2000
  • This paper presents development of program for mid-tong term load forecasting in region and district respectively. In this program, at first, the region is classified by KEPCO branch which can be analyzed in light of curl·elation between load characteristics and economic indicator and then, prediction for load density in each region was performed by scenario of economic, population and city plan. Secondly, prediction for load density in each district is performed by methodology which is based on land use method. Finally efficiency for prediction work in each KEPCO branch could be identified by applying the developed program to the Seoul city in real.

  • PDF

Low Threshold Current Density and High Efficiency Surface-Emitting Lasers with a Periodic Gain Active Structure

  • Park, Hyo-Hoon;Yoo, Byueng-Su
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • We have achieved very low threshold current densities with high light output powers for InGaAs/ GaAs surface-emitting lasers using a periodic gain active structure in which three quantum wells are inserted in two-wavelength-thick (2${\lambda}$ ) cavity. Air-post type devices with a diameter of 20~40${\mu}m$ exhibit a threshold current density of 380~410$A/cm^2$. Output power for a 40${\mu}m$ diameter device reaches over 11 mW. A simple theoretical calculation of the threshold and power performances indicates that the periodic gain structure has an advantage in achieving low threshold current density mainly due to the high coupling efficiency between gain medium and optical field. The deterioration of power, expected from the long cavity length of $2{\lambda}$, is negligible.

  • PDF

Electron Density Measurement of Inductively Coupled Plasma by Ar Gas Pressure (Ar 가스 압력에 따른 유도결합형 플라즈마의 전자 밀도 측정)

  • 이영환;김광수;조주웅;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.508-511
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of argon gas pressure. The RF output was applied in the range of 5 ∼ 50 (W) at 13.56 (MHz). The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of -100 (V) ∼+100 (V). When the pressure of argon gas was increased, electric current was decreased. There was a significant electric current increase from l0W to 30 〔W〕. Also, when the RF power was increased, electron density was increase. This implies that this method can be used to find an optimal RF rower for efficient light illumination in an electrodeless fluorescent lamp.

An Experimental Study on the Characteristic of Sprays and Spray Flames by Twin-Fluid Atomizer (2유체 분사노즐을 이용한 분무 및 연소특성에 관한 실험적 연구)

  • 백민수;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.548-558
    • /
    • 1995
  • An experimental investigation has been conducted to study the spray and combustion characteristics using the air-assisted twin fluid atomizer. Axial mean and fluctuating velocity components as well as drop-size distributions in non-reaction spray were measured with a nonintrusive phase doppler technique. Droplet number density distributions were also visualized using high speed CCD camera. Locations of spray and flame boundaries are obtained by direct photographic method. It is confirmed that at the fixed fuel flow rate, the increase of the atomizing air flow causes improvements on both spray and combustion characteristics under stable flame conditions. Internal group combustion modes where flame is located inside the spray boundary are observed to exist in the upstream region of higher droplet number density.

Photooxidation of BR Vulcanizate Using High Pressure Mercury Lamp

  • Kim, Eunha;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Polybutadiene rubber (BR) has been well known that its physical and chemical properties are changed when it is exposed to ultraviolet light undergoing photooxidation. In this study, photooxdiation process of BR vulcanizate was investigated using a high pressure mercury lamp used as an outdoor lighting, which has high UV radiation efficiency and reasonable cost. Discoloration and crack formation of photooxdized BR vulcanite surface were examined using an image analyzer. Change of chemical functional groups of BR vulcanite surface by photooxidation was investigated using ATR-FTIR, and variation of the crosslink density with the UV irradiation time was investigated. By increasing the UV irradiation time, the crosslink density steeply increased after a period of time and did not increase any more. Formation of hydroxyl (~OH) and carbonyl (~C=O) groups on the BR vulcanizate surface increased and the1,4-cis unit was converted to the 1,4-trans unit as the photooxidation was proceeded.

A Feasibility Study for Application of On-Line Wear Condition Monitoring Technique to the High-powered Diesel Engine (고출력 디젤 엔진의 On-Line 마모상태진단 기술 적용을 위한 기초연구)

  • 윤민호;정동윤;공호성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.59-65
    • /
    • 1997
  • The calibration of O.M.D is carried out experimentally and is analysed theoretically. O.M.D experimentally measures the change in optical density of artificially contaminated oil which contains Fe powder of 5, 10, 20, 30, 40, 50, 70, 100, 200 ppm. The change in optical density, D$_1$ means the logarithmic transmittance of I$_0$ over $I_1 D_2$ denotes the logarithmic transmittance I$_2$ over I$_1$ on electromagnetic force which arranges the ferrous particles along the line of magnetic force. The theoretical D$_1$ which increases linearly as increasing Fe concentrations, is analysed by light attenuation theory. The difference between theoretical D$_1$ and experimental D$_1$ is due to the attenuation of micro bubbles and the agglomeration of fine particles in the sample oil. The calibrated O.M.D is applied to the sample oil from the high-powered diesel engine. Also the results are compared with those out of the off-line techniques such as JOAP and ICP.

  • PDF

Strength and Density Properties according to mixing materials types of Non-cement light weight Panel core (무시멘트 경량패널 심재의 혼입재료 종류에 따른 유동 및 밀도, 흡수율 특성)

  • Sin, Jin-Hyun;Kim, Tae-Hyun;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.28-29
    • /
    • 2017
  • Recently, the tendency of the insulation of buildings to be important is making the buildings airtight. However, in order to get closer to the technology, it is necessary to improve the performance of walls and panels of buildings, but it is a problem due to the increase of the unit price. We will review the basic data on the density and table flow characteristics of high thermal insulation materials.

  • PDF

Improved Power Capability with Pyrolyzed Carbon Electrodes in Micro Direct Photosynthetic/Metabolic Bio-fuel Cell

  • Moriuchi, Takeyuki;Morishima, Keisuke;Furukawa, Yuji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.23-27
    • /
    • 2008
  • As a biofuel source, direct photosynthetic/metabolic biofuel cells (DPBFC) use cyanobacteria whose photosynthesis and metabolization reactions can convert light energy to electricity, In our previous work, we fabricated a prototype micro-DPBFC that could generate a peak current density of $36{\mu}A/cm^{2}$ and a maximum power density of $270nW/cm^{2}$. In this study, we improve on the previous results by using carbon micro electromechanical systems (C-MEMS), formed from the pyrolysis of patterned photoresist, to fabricate carbon electrodes of an arbitrary shape and controlled porosity to increase the surface area. With these new C-MEMS electrodes, the maximum power density of the micro-DPBFC was $516nW/cm^{2}$, a performance twice as good as the results of our previous work.