• Title/Summary/Keyword: ligand selectivity

Search Result 73, Processing Time 0.034 seconds

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Cobalt(III) Complexes of 1,3-Diaminopropane-N,N'-di-α-(β-methyl)-pentanoic Acid

  • 함혜영;박영준;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.827-831
    • /
    • 1997
  • A novel ONNO-type tetradentate ligand, 1,3-diaminopropane-N,N'-di-α-(β-methyl)-pentanoic acid (H2apmp) and its cobalt(Ⅲ) complexes, [Co(apmp)X2]n+, (X=Cl-, NO2-, H2O, X2=CO32-, en, L-phenylalanine) have been synthesized. During the preparation of the dichloro cobalt(Ⅲ) complex of apmp, [Co(apmp)Cl2]-, the ligand has coordinated to the cobalt(Ⅲ) ion in a geometric selectivity to give only the uns-cis isomer and, during the substitution reaction between L-phenylalanine and [Co(apmp)Cl2]-, the L-phenylalanine has coordinated to the cobalt(Ⅲ) ion in a geometric selectivity to give only an uns-cis-meridional isomer. It is of interest that this is a rare case of the [Co(ONNO ligand)X2]n+-type complex preparations, which gives only an uns-cis isomer with geometric selectivity.

Inclusion Selectivity of the Cyanocadmate Host Complex with Piperazine Ligand for Aromatic Guest Molecules; Benzene, Toluene, Ethylbenzene and Xylene Isomers (Piperazine 리간드를 가진 시아노카드뮴 호스트 착물의 방향족 게스트 분자에 대한 포접선택성)

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.333-338
    • /
    • 2003
  • Inclusion selectivity of a three-dimensional piperazine-ligated cyanocadmate host complex, $[Cd_x(CN)_{2x}\{HN(CH_2CH_2)_2NH\}_y]{\cdot}zG$, has been investigated for benzene (B), toluene (T), ethylbenzene (E), o- (O), m- (M), and p-xylene (P) isomers as the aromatic guest molecules. From the binary, ternary and quarternary guest mixtures of E and xylene isomer (X), the order of inclusion selectivity in the host complex is O>E>P>M. From the binary to quinary BTX mixtures, the order of preference in the complex is seen to be B>T>O${\gg}$P>M.

An Approach to Isolation of Thromboxane Synthase (TX-SYN) by Ligand Tethered Affinity Techniques

  • Andersen Niels H.;Rhee Jaekeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.119-122
    • /
    • 1992
  • The affinity chromatographic technique was applied to the isolation of Thromboxane Synthase, with a variety of imidazolyl alkanoic acids coupled Sepharose 2B including a gel (G in Table 4) which has one free COOH group in the bound affinity ligand. The effect of ligand structure on the "affinity" and "selectivity" for thromboxane synthase isolation is described.

N-Anthracenylmethyl Calix[4]azacrowns as New Fluorescent Ionophores

  • Yang, Seung-H.;Shon, Ok-J.;Park, Ki-M.;Lee, Shim-S.;Park, Ho-J.;Kim, Moon-J.;Lee, Joung-H.;Kim, Jong-S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1585-1589
    • /
    • 2002
  • Two novel calixarene-based fluoroionophores were synthesized. Their conformations were confirmed to 1,3-alternate by X-ray crystal structures. From CHEF by blocking the PET mechanism in fluorescence spectra, we observed $In^{3+}$ and $Pb^{2+}$ selectivity over other metal ions. For $In^{3+}$ion, calix[4]-bis-azacrown-5 showed about 20 times more sensitive than calix[4]-mono-azacrown-5 because the source of the binding selectivity comes from the calixarene framework and azacrown ligand by controlling the fluorescence and PET mechanisms as-sociated with the amine moiety.

Synthesis and Cations Binding Properties of a New C,N-bipyrazolic Ligand

  • Attayibat, Ahmed;Radi, Smaail;Ramdani, Abdelkrim;Lekchiri, Yahya;Hacht, Brahim;Bacquet, Maryse;Willai, Stephanie;Morcellet, Michel
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1648-1650
    • /
    • 2006
  • The synthesis of a new C,N-bipyrazolic ligand with a functionalized donor-group is reported. The binding properties of the ligand and two other ligand of similar structures towards heavy metal ions ($Hg^{2+}$, $Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$) and alkaline metal ions ($K^+$, $Na^{+}$, $Li^+$) were studied by a liquid-liquid extraction process and the extracted cation percentage was determined by atomic absorption measurements. The selectivity of the ligand to Hg(II) has been mentioned in the abstract.

Design and Synthesis of Metallopeptide Sensors: Tuning Selectivity with Ligand Variation

  • Kim, Joung-Min;Joshi, Bishnu Prasad;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2537-2541
    • /
    • 2010
  • We chose a fluorescent pentapeptide sensor (-CPGHE) containing a dansyl fluorophore as a model peptide and investigated whether the selectivity and sensitivity of the peptides for heavy and transition metal ions could be tuned by changing amino acid sequence. In this process, we developed a selective peptide sensor, Cp1-d (-HHPGE, $K_d\;=\;670\;nM$) for detection of $Zn^{2+}$ in 100% aqueous solution and a selective and sensitive peptide sensor, Cp1-e (-CCHPGE, $K_d\;=\;24\;nM$) for detection of $Cd^{2+}$ in 100% aqueous solution. Overall results indicate that the selectivity and sensitivity of the metallopeptide sensors to specific heavy and transition metal ions can be tuned by changing amino acid sequence.

Formation of Cyclodextrin Adsorbent Using Fatty Acid as a Ligand and Fractionation of $\alpha$-, $\beta$- and ${\gamma}$-cyclodextrins (Fatty Acid를 Ligand로한 Cyclodextrin Adsorbent의 제조와 $\alpha$-, $\beta$-, ${\gamma}$-Cyclodextrin의 분획)

  • 정승환;박동찬이용현
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.491-498
    • /
    • 1995
  • In order to fraclionate ${\alpha}$-, ${\beta}$- and ${\gamma}$-cyclodextrins(CDs) from CD reaction mixture, various CD adsorbents were manufactured using fatty acids as the ligand molecules and anion exchange resins as matrix. Among several anion exchange resins, DEAE Cellulose was found to be the most suitable matrix for binding fatty acid. The binding stability between DEAE Cellulose and capric acid was tested under the various operation conditions, such as temperature, ethanol concentration, and ionic strength. Specific CD adsorbents manufactured with different chain-length fatty acids, saturated and unsaturated, were compared in terms of the recovery yield and selectivity of ${\alpha}$-, ${\beta}$- and ${\gamma}$-CDs. Stearic acid (C18, saturated) was identified as the most effective ligand for fractionation of ${\alpha}$-CD, and linoleic acid ((C18, unsaturated ) for ${\beta}$-CD. The spacer length between the matrix and ligand was required for effective adsorption of CDs, and the double bond in fatty acid molecules was also acted as an important factor determining recovery yield and selectivity. The elusion patterns of ${\alpha}$- and ${\alpha}$-, ${\beta}$-CD from column packed with stearic acid and linoleic acid CD adsorbents were also investigated at the various elusion conditions for fractionation of ${\alpha}$- and ${\beta}$-CD.

  • PDF

Involvement of Amino Acids Flanking Glu7.32 of the Gonadotropin-releasing Hormone Receptor in the Selectivity of Antagonists

  • Wang, Chengbing;Oh, Da Young;Maiti, Kaushik;Kwon, Hyuk Bang;Cheon, Jun;Hwang, Jong-Ik;Seong, Jae Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • The Glu/$Asp^{7.32}$ residue in extracellular loop 3 of the mammalian type-I gonadotropin-releasing hormone receptor (GnRHR) interacts with $Arg^8$ of GnRH-I, conferring preferential ligand selectivity for GnRH-I over GnRH-II. Previously, we demonstrated that the residues (Ser and Pro) flanking Glu/$Asp^{7.32}$ also play a role in the differential agonist selectivity of mammalian and non-mammalian GnRHRs. In this study, we examined the differential antagonist selectivity of wild type and mutant GnRHRs in which the Ser and Pro residues were changed. Cetrorelix, a GnRH-I antagonist, and Trptorelix-2, a GnRH-II antagonist, exhibited high selectivity for mammalian type-I and non-mammalian GnRHRs, respectively. The inhibitory activities of the antagonists were dependent on agonist concentration and subtype. Rat GnRHR in which the Ser-Glu-Pro (SEP) motif was changed to Pro-Glu-Val (PEV) or Pro-Glu-Ser (PES) had increased sensitivity to Trptorelix-2 but decreased sensitivity to Cetrorelix. Mutant bullfrog GnRHR-1 with the SEP motif had the reverse antagonist selectivity, with reduced sensitivity to Trptorelix-2 but increased sensitivity to Cetrorelix. These findings indicate that the residues flanking $Glu^{7.32}$ are important for antagonist as well as agonist selectivity.

Nanoplasmonic Spectroscopic Imaging and Molecular Probes

  • Choe, Yeon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.85-85
    • /
    • 2013
  • Label-free, sensitive and selective detection methods with high spatial resolution are critically required for future applications in chemical sensor, biological sensor, and nanospectroscopic imaging. Here I describe the development of Plasmon Resonance Energy Transfer (PRET)-based molecular imaging in living cells as the first demonstration of intracellular imaging with PRET-based nanospectroscopy. In-vivo PRET imaging relied on the overlap between plasmon resonance frequency of gold nanoplasmonic probe (GNP) and absorption peak frequencies of conjugated molecules, which leads to create 'quantized quenching dips' in Rayleigh scattering spectrum of GNP. The position of these dips exactly matched with the absorption peaks of target molecules. As another innovative application of PRET, I present a highly selective and sensitive detection of metal ions by creating conjugated metal-ligand complexes on a single GNP. In addition to conferring high spatial resolution due to the small size of the metal ion probes (50 nm in diameter), this method is 100 to 1,000 folds more sensitive than organic reporter-based methods. Moreover, this technique achieves high selectivity due to the selective formation of Cu2+complexes and selective resonant quenching of GNP by the conjugated complexes. Since many metal ion ligand complexes generate new absorption peak due to the d-d transition in the metal ligand complex when a specific metal ion is inserted into the complex, we can match with the scattering frequency of nanoplasmonic metal ligand systems and the new absorption peak.

  • PDF