• Title/Summary/Keyword: ligand interaction

Search Result 234, Processing Time 0.031 seconds

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces

  • Baek, Kyung Yup;Kim, Seohyun;Koh, Hye Ran
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.

Immunologic Mechanism of Experimental and Therapeutic Ultraviolet B Responses

  • Lew, Wook
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • The immunological mechanism of the responses to ultraviolet (UV) B radiation in mouse models were investigated by the suppression of contact hypersensitivity (CHS) and delayed type hypersensitivity (DTH), and susceptibility to infection. However, there are some differences in immune suppression according to the different models as well as the irradiation protocols. Therefore, this review focused on the differences in the suppressive effects on CHS and DTH, and susceptibility to infection in relation to the different in vivo models. Recent advances in cytokine knockout mice experiments have the reexamination of the role of the critical cytokines in UVB-induced immune suppression, which was investigated previously by blocking antibodies. The characteristics of the suppressor cells responsible for UVB-induced tolerance were determined. The subcellular mechanism of UVB-induced immune suppression was also explained by the induction of apoptotic cells through the Fas and Fas-ligand interaction. The phagocytosis of the apoptotic cells is believed to induce the production of the immune suppressive cytokine like interleukin-10 by macrophages. Therefore, the therapeutic UVB response to a skin disease, such as psoriasis, by the depletion of infiltrating T cells could be considered in the extension line of apoptosis and immune suppression.

Binding Capacity of Human Serum Albumin with Estrogen and Other Ligands (Human Serum Albumin이 Estrogen과 기타 Ligands와의 결합력에 관한 연구)

  • Park, Geum-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.414-419
    • /
    • 1994
  • This study was trying to find what physical changes occurred to albumin when it reacted with estrogen and other ligands. Each concentration of human serum albumin with 100$\mu$l estradiol reacted at the highest binding capacity of 280nm. In addition, 1 hr of reaction time showed the highest binding rate. Conformational changes in human serum albumin with dietylstillbesterol and N-ethyl-maleimide produced strong binding capacities. The changes were immediate and they did not increase or decrease over time. Effects of human serum albumin with estriol induced no interaction each other. The binding capacity of human serum albumin with vitamin D$_2$was lower than estradiol. and the highest binding rate showed 1 hr of reaction time. Vitamin D$_2$ was very similar to the binding capacity of estradiol.

  • PDF

Scintillation Proximity Assay (섬광근접측정법)

  • Choi, Chang-Woon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.461-465
    • /
    • 1999
  • Scintillation proximity assay (SPA) is a unique type of radioimmunoassay and makes it possible to use radioisotopes for monitoring binding reactions continuously without separation procedure. Microbeads containing a fluorophor are covalently linked to antibody or receptor. When a radiolabeled antigen or ligand is added it binds to the beads and the emitted short range electrons, excite the fluorophor in the beads. The light emitted can be measured in a scintillation counter. $^3H$ or $^{125}I$ has been used for SPA. The sensitivities achieved with SPA are comparable to the sensitivities of other procedures. SPA is applicable to immunology, receptor binding, monitoring interactions of biomolecules and study for the kinetics of interaction between receptors and ligands.

  • PDF

Elucidating the Dynamic Properties of Globular Protein using Predicted Order Parameters and 15N NMR Relaxation

  • Yi, Jong-Jae;Kim, Won-Je;Rhee, Jin-Kyu;Lim, Jongsoo;Lee, Bong-Jin;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.26-30
    • /
    • 2017
  • Dynamic properties of proteins can present key information on protein-ligand and protein-protein interaction. Despite their usefulness, the properties of protein dynamics have not been obtained easily due to protein stability and short-term measurement. Here, it is shown that combined method for analysis of dynamical properties. It utilizes predicted order parameter and NMR relaxation data such as $T_1$, $T_2$, and heteronuclear NOE. The suggested method could be used to know the flexibility of protein roughly without precise dynamical parameters such as order parameters through model-free analysis.

Discrimination of JNK3 bound small molecules by saturation transfer difference NMR experiments

  • Lim, Jong-Soo;Ahn, Hee-Chul
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.67-77
    • /
    • 2012
  • The small molecule binding to the c-Jun N-terminal kinase 3 (JNK3) was examined by the measurements of saturation transfer difference (STD) NMR experiments. The STD NMR experiment of ATP added to JNK3 clearly showed the binding of the nucleotide to the kinase. The STD NMR spectrum of dNTPs added to JNK3 discriminated the kinase-bound nucleotide from the unbound ones. After the five-fold addition of ATP to the dNTPs and JNK3 mixture, only signals of the cognate substrate of JNK3, ATP, were observed from the STD NMR experiment. These results signify that by the STD NMR the small molecules bound to JNK3 can be discriminated from the pool of the unbound molecules. Furthermore the binding mode of the small molecule to JNK3 can be determined by the competition experiments with ATP.

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Complexation Studies for Cadmium (II) with Quercetin and (+)-Catechin (Quercetin과 (+)-Catechin의 카드뮴(II)에 대한 착물반응)

  • Lee, Jeong-Ho;Shin, Sun-Woo;Baek, Seung-Hwa
    • YAKHAK HOEJI
    • /
    • v.53 no.6
    • /
    • pp.342-350
    • /
    • 2009
  • The interaction of cadmium (II) ion with quercetin and (+)-catechin was investigated in aqueous solution at various pH. The flavonoid/cadmium stochiometries for cadmium (II) binding to quercetin and (+)-catechin have been determined by UV-vis spectroscopy. 1 : 1 Cd (II)-Flavonoid complex had a maximum absorbance and showed the bathochromic shift of the long-wavelength band of the UV-vis spectra in the alkaline pH, that occurs upon complexation, due to a ligandto-metal charge transfer. These results suggest that Cd (II)-flavonoid complex has the optimal condition of chelation in 0.2 M $NH_3$ - 0.2 M $NH_4Cl$ (pH 8.0) solution.

Sulforaphane Inhibits Osteoclastogenesis by Inhibiting Nuclear Factor-κB

  • Kim, Soo-Jin;Kang, So-Young;Shin, Hyun-Hee;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.364-370
    • /
    • 2005
  • We show that sulforaphane inhibits osteoclastogenesis in the presence of macrophage colony-stimulating factor (M-CSF) and receptor for activation of nuclear factor-${\kappa}B$ ligand (RANKL) in osteoclast (OC) precursors. Sulforaphane, an aliphatic isothiocyanate, is a known cancer chemo-preventative agent with anti-oxidative properties. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) is a critical transcription factor in RANKL-induced osteoclastogenesis, and electrophoretic mobility shift assays (EMSAs) and assay of NF-${\kappa}B$-mediated secreted alkaline phosphatase (SEAP) revealed that sulforaphane selectively inhibited NF-${\kappa}B$ activation induced by RANKL. Inhibition may involve interaction of sulforaphane with thiol groups, since it was prevented by reducing agents.

Synthesis, Spectroscopic Studies of Binuclear Ruthenium(II) Carbonyl Thiosemicarba-zone Complexes Containing PPh3/AsPh3 as Co-ligands: DNA Binding/Cleavage

  • Sampath, K.;Sathiyaraj, S.;Jayabalakrishnan, C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.367-373
    • /
    • 2013
  • The ruthenium(II) ferrocenyl heterocyclic thiosemicarbazone complexes of the type $[RuCl(CO)(EPh_3)]_2L$ (where E = P/As; L = binucleating monobasic tridendate thiosemicarbazone ligand) have been investigated. Strutural features were determined by analytical and spectral techniques. Binding of these complexes with CT-DNA by absorption spectral study indicates that the ruthenium(II) complexes form adducts with DNA and has intrinsic binding constant in the range of $3.3{\times}10^4-1.2{\times}10^5M^{-1}$. The complexes exhibit a remarkable DNA cleavage activity with CT-DNA in the presence of hydrogen oxide and the cleavage activity depends on dosage.