• Title/Summary/Keyword: lifting off

Search Result 36, Processing Time 0.024 seconds

Downbeat Nystagmus Associated With Brainstem Compression by Vertebral Artery

  • Moon, Ki-Hyoung;Lee, Sang-Ahm;Ahn, Jae-Sung;Kwun, Byung-Duk
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.3
    • /
    • pp.190-192
    • /
    • 2007
  • Rarely, downbeat nystagmus can occur due to compression of the lower brainstem by the ectatic vertebral artery and be resolved by microvascular decompression. We present a case of a 67-year-old man with downbeat nystagmus associated with brainstem compression by ectatic vertebral artery. He presented with oscillopsia and vertigo. When he turned his head upward, his symptoms were aggravated and a gait disturbance occurred. Magnetic resonance imaging and computed tomographic angiography demonstrated compression of the medulla oblongata by the left ectatic vertebral artery and other medical causes of downbeat nystagmus were ruled out. Retromastoid craniotomy was performed and after lifting the vertebral artery off the medulla, a trough-shaped indentation in the lower brainstem was identified. The ectatic vertebral artery was repositioned and a Teflon was inserted between the brainstem and the ectatic vertebral artery. Postoperatively, downbeat nystagmus had disappeared.

Analysis on Aerodynamic Characteristics of the CRW Air-Vehicle (CRW 비행체의 공력특성 해석)

  • Choi Seong Wook;Kim Jai Moo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002 As an air vehicle for the Smart UAV, CRW(Canard Rotor/wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW First method was the superpose DATCOM method which is capable of three lifting sufaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.

Effect of Piston Ring Gap on the Axial Motion of Piston Ring and Oil Consumption (피스톤 링갭이 링거동 및 오일소모에 미치는 영향)

  • 민병순;김중수;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.197-204
    • /
    • 1997
  • In order to investigate the relationship between the ring gap ratio and oil consumption, the axial motion of piston ring was measured by capacitance technique. The pressures of each land and the motions of each ring were calculated by orifice-volume method in which it is assumed that the ring gaps are the only gas leakage paths. The calculated results were compared with the measured ones. Consequently, it is known that the increase of ring gap ratio has the effect of lifting the first ring. The calculated results were roughly in accordance with those measured. Therefore, it is possible to predict the effect of design variables on the pattern of ring motion. It is known that the lift off of first ring accompanied by the increase of ring gap ratio make rise of oil consumption.

  • PDF

Analysis on Aerodynamic Characteristics of the CRW(Canard Rotor/wing) Air-Vehicle (CRW 비행체의 공력특성 해석)

  • Choi Seong Wook;Kim Jai Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.106-113
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002. As an air vehicle for the Smart UAV, CRW(Canard Rotor/Wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW. First method was the superpose DATCOM method which is capable of three lifting surfaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.

  • PDF

Aerial Application using a Small RF Controlled Helicopter (V) - Tail Rotor System - (소형 무인헬기를 이용한 항공방제기술(V) -테일 로터부의 구성-)

  • Koo, Y.M.;Seok, T.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2007
  • In this study, a tail rotor system for an agricultural RF controlled helicopter was developed and tested. This study concluded the mechanical development of the 'Agro-heli' by completing the tail rotor system and its radio console. The RF control system was closely related with the tail system for the control of flying attitude. The thrust of the tail system balance off the reaction torque, created by the main rotor. Lifting tests with and without the tail system were compared for estimating the consumption of power. The tail system would use $4{\sim}5%$ of the total power which was in an acceptable range. Flying performance and attitude was visually inspected. It showed reliable and safe control during the distance flying trials and could be adapted for utilization in aerial applications. Aerial application using an RF controlled agricultural helicopter may make precise and timely spraying possible.

Study Case on the Log Cultivation of Phellinus baumii for It's High Quality and Large Quantity (고품질 다수확 원목 상황버섯 재배 경영사례 조사)

  • Suh, Gyu-Sun;Chang, Hyun-You;Kim, Soon-Geun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.153-167
    • /
    • 2008
  • High temperature and natural sun light are considered as the core conditions for high quality and large quantity of Phellinus baumii production. However still now on there has been a mistake of excessively cutting off the natural light by spreading the closing nets on the mushroom cultivating house. For an example there are many houses where the closing nets under the roofs be extended to cover the sides of the houses, which way prevents the mushrooms in the houses from receiving sufficient natural sun light and getting the temperature sufficiently to grow so that the quantity and quality of the produced mushrooms are lowered even though the mushrooms can grow in those conditions. In order to avoid this mistake, the closing nets must be placed on the roofs of the houses only without dropping them to cover the sides. Further more when the closing nets are placed triply at the beginning stage of Phellinus baumii's growth in the house, the nets restrain the internal temperature of the house going up and intercept the natural bright light flowing into the house so that the growing tardiness occur to the Phellinus baumii. Therefore the roof only must have been covered by the closing net for 65% cutting off the light until May, and then covered by double folded the net for June, triple folded the net for July and August, double folded the net for September, and the single net for October. When the ventilation in the house has been maintained until the house tightly balloon out through controling lifting force of internal air, the Phellinus baumii can grow well while the bed logs themselves aren't dried out. Marketing is also very much important as well as increasing quality and quantity of Phellinus baumii production.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.

Lifting Shadows off the End-of-Life Care: Hopes and Beliefs on Video Decision Support Tools for Advance Care Planning

  • Jeong, Heon-Jae;Yoon, Hyeyeon
    • Journal of Hospice and Palliative Care
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • As advance care planning is taking center stage in the field of end-of-life care, various tools have been developed to aid in the often emotional and difficult decision-making process. Video decision support tools are one of the most promising means of assistance, of which the modus operandi is to provide more comprehensive and precise information of medical procedures to patients and their families, allowing them to make better informed decisions. Despite such value, some are concerned about its potential negative impact. For example, video footages of some procedures may be shocking and unpalatable to non-medical professionals, and patients and families may refuse the procedures. One approach to soften the sometimes unpleasant visual of medical procedures is to show less aggressive or more relaxing scenes. Yet another potential issue is that the objectivity of video decision support tools might be vulnerable to the very stakeholders who were involved in the development. Some might argue that having multiple stakeholders may function as checks and balances and provide collective wisdom, but we should provide more systematic guarantee on the objectivity of the visual decision aids. Because the decision of the modality of an individual's death is the last and most significant choice in one's life, no party should exert their influence on such a delicate decision. With carefully designed video decision support tools, our patients will live the last moments of their lives with dignity, as they deserve.

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.