• Title/Summary/Keyword: lifting line theory

Search Result 13, Processing Time 0.017 seconds

Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART I Rotor

  • Na, Deokhwan;You, Younghyun;Jung, Sung N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.165-173
    • /
    • 2017
  • The aeromechanics predictions of HART I rotor obtained using a computational structural dynamics (CSD) code are evaluated against the wind tunnel test data. The flight regimes include low speed descending flight at an advance ratio of ${\mu}=0.151$ and cruise condition at ${\mu}=0.229$. A lifting-line based unsteady airfoil theory with C81 table look-up is used to calculate the aerodynamic loads acting on the blade. Either rolled-up free wake or multiple-trailer wake with consolidation (MTC) model is employed for the free vortex wake representation. The measured blade properties accomplished recently are used to analyze the rotor for the up-to-date computations. The comparison results on airloads and structural loads of the rotor show good agreements for descent flight and fair for cruise flight condition. It is observed that MTC model generally improves the correlation against the measured data. The structural loads predictions for all measurement locations of HART I rotor are investigated. The dominant harmonic response of the structural loads is clearly captured with MTC model.

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

Measurement of Velocity Field Around Hydrofoil of Finite Span with Shallow Submergence (몰수 심도가 작은 고속 수중익 주위의 속도장 측정)

  • Kim, Deok-Ho;Lee, Jeong-Moo;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.80-87
    • /
    • 2005
  • A set of experiments was carried out for obtaining the velocity field around the hydrofoil of finite span, using a wing of the NACA 0012 section in a circulating water channel. DPIV technique was used to measure the velocity field, and the velocity measurements along the span were done for 3 speeds, 3 submerged depths, and 4 angles of attack. Experimental data are compared with the theoretical assumptions, as well as the numerical findings by Lee and Lee(2004). Special care is given to the flow near the tips and in the region close to the leading edge. Though indirect, using the measured data of the velocity, it is now possible to compare the aerodynamic and the hydrodynamic strength of the circulation distribution of a wing in the framework of the lifting-line theory.