• Title/Summary/Keyword: life-cycle cost

Search Result 1,051, Processing Time 0.024 seconds

Reliability-based Life Cycle Cost Analysis for Optimal Seismic Upgrading of Bridges

  • Alfredo H-S. Ang;Cho, Hyo-Nam;Lim, Jong-Kwon;An, Joong-San
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • This study is intended to propose a systematic approach for reliability-based assessment of life cycle cost (LCC) effectiveness and economic efficiency for cost-effective seismic upgrading of existing bridges. The LCC function is expressed as the sum of the upgrading cost and all the discounted life cycle damage costs, which is formulated as a function of the Park-Ang damage index and structural damage probability. The damage costs are expressed in terms of direct damage costs such as repair/replacement costs, human losses and property damage costs, and indirect damage costs such as road user costs and indirect regional economic losses. For dealing with a variety of uncertainties associated with earthquake loads and capacities, a simulation-based reliability approach is used. The SMART-DRAIN-2DX, which is a modified version of the well-known DRAIN-2DX, is extended by incor-porating LCC analysis based on the LCC function developed in the study. Economic efficiencies for optimal seismic upgradings of the continuous PC segmental bridges are assessed using the proposed LCC functions and benefit-cost ratio.

  • PDF

A Study on the Developing of the Life Cycle Cost Analysis System for Buildings (건축물의 Life Cycle Cost 분석 시스템 개발에 관한 연구)

  • Ji Sang-Jun;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.450-453
    • /
    • 2001
  • Recently, the government recommend the use of LCC analysis at a feasibility phase by comprehensive countermeasures for efficient public construction projects and comprehensive countermeasures against preventing unconscientious construction. From the end of 1980's, studies of LCC is in progress actively However, it is difficult to put to practical use for lack of a process, a detailed guideline and existing data about LCC analysis. This study proposes a analysis methodology and a cost model can estimate life cycle cost for Buildings. Furthermore, it develops algorithms for computerizing which is able to estimate efficient LCC assessment.

  • PDF

A Linkage Method for the Life Cycle Cost Breakdown Structure through an Analysis of Boundary Conditions (경계조건 분석을 통한 LCCBS 연계방안)

  • Jeong, Jae-Hyuk;Kim, Tae-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.321-332
    • /
    • 2013
  • Costs and expenses are intertwined and incurred throughout an entire construction project, even from the pre-construction phase, and each phase has a different impact on the life cycle cost (LCC). However, the cost breakdown structure (CBS) is different in each phase of a building construction project, which makes it hard to reasonably calculate construction cost. For this reason, the boundary conditions were analyzed in this study based on the life cycle cost break structure (LCCBS). In addition, breakdown factors were analyzed based on the boundary conditions to derive a linkage method. The validity of the linkage method was verified through application to actual construction projects. Through the analysis, it was found that the problem of items being left out was reduced by more than 97.2 percent, and the work was done an average of 6 hours faster compared to the conventional method. It is expected that by applying the new LCC system, LCC will be both reduced and calculated in a more efficient manner.

Optimal Seismic Reliability of Bridges Based on Minimum Expected Life Cycle Costs (최소기대비용에 기초한 교량의 최적내진신뢰성)

  • 조효남;임종권;심성택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.249-256
    • /
    • 1999
  • This study is intended to propose a systematic procedure for the development of the reliability-based seismic safety and cost-effective Performance criteria for design and upgrading of long span PC bridges. In the paper, a set of cost function models for life cycle cost analysis of bridges is proposed. The total life cycle cost functions consist of initial cost and direct/indirect damage costs considering repair/replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses. The damage costs are successfully expressed in terms of Park-Ang median global damage indices and damage probabilities. The proposed approach is successfully applied to model bridges in both regions of a moderate seismicity area like Seoul, Korea and a high one like Tokyo, Japan. It may be expected that the proposed approach can be effectively utilized for the development of cost-effective performance criteria for design and upgrading of various types of bridges as well as long span PC bridges.

  • PDF

Life Cycle Cost Analysis of Steel Railroad Bridges Under Corrosive Environment (강철도교의 부식영향에 따른 생애주기비용분석)

  • 이종수;유선미;조선규;김만철
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.684-689
    • /
    • 2002
  • This paper represents the life-cycle cost(LCC) of steel bridges which are located on the train-network. Corrosion problems are mainly considered in the steel members such as steel plate girder, box girder, truss and arch. Based on the current value, initial construction cost, maintenance cost and demolition cost are calculated and life-cycle costs are formulated for the several types of bridges. From the comparison on each LCC, an effective painting method is recommended for reducing the LCC of steel bridges. Even though the initial cost of Super Weather Resistance Heavy Duty Paintings (Resin Fluoride) is expensive, because of the long endurance, the LCC of steel bridges painted with Super Weather Resistance Heavy Duty Paintings (Resin Fluoride) is less than that painted with General Heavy Duty (Rubber Chloride).

  • PDF

Investigation into Life Cycle Cost of Electric Multiple Unit (EMU) (전동차 수명 주기 비용에 대한 고찰)

  • 박종목;김필환;이종권
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.396-407
    • /
    • 2002
  • New Electric Multiple Units that will be released in the rolling stock market are required to meet regulations of reinforced safety and conveniences for passengers. For those reasons, Vehicle purchasing cost to be increased will be unavoidable. However, The reduction of operating cost by employing effective and efficient design on the EMU at initial phase will be expected. Hence, Vehicle purchasing shall be determined to take into consideration of purchasing cost vehicle at first stage and operation cost appropriately. In order for introducing method to presume such costs, this document will show Life Cycle Cost on vehicle and its applicability.

  • PDF

Life Cycle Cost Comparative Analysis for Main Conversion System in 8200 Series Electric Locomotive (8200호대 전기기관차 주변환장치 LCC 비교 분석)

  • Kim, Wan-il;Chang, Yoon-Woo;Kim, Dong-Man;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1717-1722
    • /
    • 2018
  • Parts and units of 8200 series electric locomotive are aging, but and source technology is not secured. As a results, maintenance costs are increasing steadily due to using expensive substitute parts. Therefore, various studies have been conducted to reduce maintenance costs. In this paper, the life cycle cost(LCC) of the developed and conventional products were compared and analyzed about main conversion system in 8200 Series electric locomotive. As a result of analysis, the material cost was the highest in the conventional product among the various item costs. On the other hand, it is confirmed that preventive cost was the highest among the costs about the developed product.

Derivation of Profit Curve by Cubic Cost Function and Mathematical Verification of Industry Life Cycle: Focused on All Industries in Korea (3차 비용함수에 의한 이익곡선 도출과 산업 라이프사이클의 수리적 검증: 우리나라 전 산업을 중심으로)

  • Hoo Seok Pai;Chae Kwan Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.481-496
    • /
    • 2023
  • Purpose: The main theme of this study is to derive a profit curve by a cubic cost function for nonlinear CVP analysis. According to the analytical approach to derive a nonlinear profit function in this study, it is possible with only the existing cost structure to calculate the profit maximization and downtime point sales unlike the classical CVP analysis. Furthermore, the profit curve by the mathematical model of this study could serve as a tool to quantify the qualitative evaluation of each stage of the industry life cycle. Methods: This study followed the mathematical approach from the cubic cost function model of microeconomics, and using real data of the Bank of Korea Results: The nonlinear profit function suggested by this study is as follows; ${\pi}(x)=-a\left(x-\frac{f}{1-v}\right)^3+(1-v)x-k$ where $a=\frac{1}{3}v\left(\frac{(1-v)}{f}\right)^2,k=f-a\left(1-\frac{f}{1-v \right)^3$ Conclusion: The process and results of this study would be able to contribute not only in practice of nonlinear CVP analysis required in the management accounting or financial management, but also in cost theory of microeconomics. Also, since the life cycle of all industries in Korea was verified to the growth or mature stage, decision makers should pay careful attention to determining life cycle stages and consider the profit curve by the average variable cost ratio over multi periods.

Reliability Index Optimization for Pier Type Quay Walls Using Life Cycle Cost (생애주기비용을 이용한 잔교식 안벽의 신뢰도지수 최적화)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.422-428
    • /
    • 2011
  • Optimal reliability indices were found by optimizing life cycle cost(LCC) of pier type quay walls. Failure probability of pier and shore bridge were calculated by response surface method. Then, they were used to obtain recovery cost after damage. Costs for initial construction and maintenance were also considered in finding optimal reliability indices. Target reliability indices which may be used in reliability based design were suggested by numerical examples under seismic load and ship load.

Life-cycle-cost optimization for the wind load design of tall buildings equipped with TMDs

  • Venanzi, Ilaria;Ierimonti, Laura;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.379-392
    • /
    • 2020
  • The paper presents a Life-Cycle Cost-based optimization framework for wind-excited tall buildings equipped with Tuned Mass Dampers (TMDs). The objective is to minimize the Life-Cycle Cost that comprises initial costs of the structure, the control system and costs related to repair, maintenance and downtime over the building's lifetime. The integrated optimization of structural sections and mass ratio of the TMDs is carried out, leading to a set of Pareto optimal solutions. The main advantage of the proposed methodology is that, differently from the traditional optimal design approach, it allows to perform the unified design of both the structure and the control system in a Life Cycle Cost Analysis framework. The procedure quantifies wind-induced losses, related to structural and nonstructural damage, considering the stochastic nature of the loads (wind velocity and direction), the specificity of the structural modeling (e.g., non-shear-type vibration modes and torsional effects) and the presence of the TMDs. Both serviceability and ultimate limit states related to the structure and the TMDs' damage are adopted for the computation of repair costs. The application to a case study tall building allows to demonstrate the efficiency of the procedure for the integrated design of the structure and the control system.