• Title/Summary/Keyword: lidar data filtering

Search Result 23, Processing Time 0.023 seconds

Filtering of Lidar Data using Labeling and RANSAC Algorithm (Labeling과 RANSAC알고리즘을 이용한 Lidar 데이터의 필터링)

  • Lee, Jeong-Ho;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.267-270
    • /
    • 2010
  • In filtering of urban lidar data, low outliers or opening underground areas may cause errors that some ground points are labelled as non-ground objects. To solve such a problem, this paper proposes an automated method which consists of RANSAC algorithm, one-dimensional labeling, and morphology filter. All processes are conducted along the lidar scan line profile for efficient computation. Lidar data over Dajeon, Korea is used and the final results are evaluated visually. It is shown that the proposed method is quite promising in urban dem generation.

  • PDF

Accuracy Assessment of DTM Generation Using LIDAR Data (LIDAR 자료를 이용한 DTM 생성 정확도 평가)

  • Yoo Hwan Hee;Kim Seong Sam;Chung Dong Ki;Hong Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2005
  • 3D models in urban areas are essential for a variety of applications, such as virtual visualization, GIS, and mobile communications. LIDAR (Light Detection and Ranging) is a relatively new technology for obtaining Digital Terrain Models (DTM) of the earth's surface since manual 3D data reconstruction is very costly and time consuming. In this paper an approach to extract ground and non-ground points data from LIDAR data by using filtering is presented and the accuracy for generating DTM from ground points data is evaluated. Numerous filter algorithms have been developed to date. To determine the performance of filtering, we selected three filters which are based on the concepts for height difference, slope, and morphology, and also were applied two different data acquired from high raised apartments areas and low house areas. From the results it has been found that the accuracy for generating DTM from LIDAR data are 0.16 m and 0.59 m in high raised apartments areas and low house areas respectively. We expect that LIDAR data is used to generate the accurate DTM in urban areas.

Improving the Quality of Filtered Lidar Data by Local Operations

  • Seo, Su-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.189-198
    • /
    • 2007
  • Introduction of lidar technology have contributed to a wide range of applications in generating quality surface models. Accordingly, because of the importance of terrain surface models in mapping applications, rigorous studies have been performed to extract ground points from a lidar data point cloud. Although most filters have been shown abilities to extract ground points with their parameters tuned, however, most experiments revealed that there are certain limitations in optimizing filter parameters and the correction of remaining misclassified points is not straightforward. In this study, therefore, a method to improve the quality of filtered lidar data is proposed, which exploits neighboring surface properties arising between immediate neighbors. The method comprises a sequence of procedures which can reduce commission and omission errors. Commission errors occurring in low-rise objects are reduced by utilizing morphological operations. On the other hand, omission errors are reduced by adding missing ground points around step edges. Experimental results show that the qualities of filtered data can be improved considerably by the proposed method.

Comparative Analysis and Accuracy Improvement on Ground Point Filtering of Airborne LIDAR Data for Forest Terrain Modeling (산림지형 모델링을 위한 항공 라이다 데이터의 지면점 필터링 비교분석과 정확도 개선)

  • Hwang, Se-Ran;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.641-650
    • /
    • 2011
  • Airborne LIDAR system, utilized in various forest studies, provides efficiently spatial information about vertical structures of forest areas. The tree height is one of the most essential measurements to derive forest information such as biomass, which can be estimated from the forest terrain model. As the terrain model is generated by the interpolation of ground points extracted from LIDAR data, filtering methods with high reliability to classify reliably the ground points are required. In this paper, we applied three representative filtering methods to forest LIDAR data with diverse characteristics, measured the errors and performance of these methods, and analyzed the causes of the errors. Based on their complementary characteristics derived from the analysis results, we have attempted to combine the results and checked the performance improvement. In most test areas, the convergence method showed the satisfactory results, where the filtering performance were improved more than 10% in maximum. Also, we have generated DTM using the classified ground points and compared with the verification data. The DTM retains about 17cm RMSE, which can be sufficiently utilized for the derivation of forest information.

Automatic Extraction of Individual Tree Height in Mountainous Forest Using Airborne Lidar Data (항공 Lidar 데이터를 이용한 산림지역의 개체목 자동 인식 및 수고 추출)

  • Woo, Choong-Shik;Yoon, Jong-Suk;Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.251-258
    • /
    • 2007
  • Airborne Lidar (light detection and ranging) can be an effective alternative in forest inventory to overcome the limitations of conventional field survey and aerial photo interpretation. In this study, we attempt to develop methodologies to identify individual trees and to estimate tree height from airborne Lidar data. Initially, digital elevation model (DEM) data representing the exact ground surface were generated by removing non-ground returns from the multiple-return laser point clouds, obtained over the coniferous forest site of rugged terrain. Based on the canopy height model (CHM) data representing non-ground layer, individual tree heights are extracted through pseudo-grid method and moving window filtering algorithm. Comparing with field survey data and aerial photo interpretation on sample plots, the number of trees extracted from Lidar data show over 90% accuracy and tree heights were underestimated within 1.1m in average at two plantation stands of pine (Pinus koraiensis) and larch (Larix leptolepis).

Comprehensive Comparisons among LIDAR Fitering Algorithms for the Classification of Ground and Non-ground Points (지면.비지면점 분류를 위한 라이다 필터링 알고리즘의 종합적인 비교)

  • Kim, Eui-Myoung;Cho, Du-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • Filtering process that separates ground and non-ground points from LIDAR data is important in order to create the digital elevation model (DEM) or extract objects on the ground. The purpose of this research is to select the most effective filtering algorithm through qualitative and quantitative analysis for the existing filtering method used to extract ground points from LIDAR data. For this, four filtering methods including Adaptive TIN(ATIN), Perspective Center-based filtering method(PC), Elevation Threshold with Expand Window(ETEW) and Progressive Morphology(PM) were applied to mountain area, urban area and the area where building and mountains exist together. Then the characteristics for each method were analyzed. For the qualitative comparison of four filtering methods used for the research, visual method was applied after creating shaded relief image. For the quantitative comparison, an absolute comparison was conducted by using control points observed by GPS and a relative comparison was conducted by the digital elevation model of the National Geographic Information Institute. Through the filtering experiment of the LIDAR data, the Adaptive TIN algorithm extracted the ground points in mountain area and urban area most effectively. In the area where buildings and mountains coexist, progressive morphology algorithm generated the best result. In addition, as a result of qualitative and quantitative comparisons, the applicable filtering algorithm regardless of topographic characteristics appeared to be ATIN algorithm.

Performance Assessment of a LIDAR Data Segmentation Method based on Simulation (시뮬레이션을 이용한 라이다 데이터 분할 기법의 성능 평가)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.231-233
    • /
    • 2010
  • Many algorithms for processing LIDAR data are being developed for diverse applications not limited to patch segmentation, bare-earth filtering and building extraction. However, since we cannot exactly know the true locations of LIDAR points, it is difficult to assess the performance of a LIDAR data processing algorithm. In this paper, we thus attempted the performance assessment of the segmentation algorithm developed by Lee (2006) using the LIDAR data generated through simulation based on sensor modelling. Consequently, based on simulation, we can perform the performance assessment of a LIDAR processing algorithm more objectively and quantitatively with an automatic procedure.

  • PDF

Characteristics of Airborne Lidar Data and Ground Points Separation in Forested Area (산림지역에서의 항공 Lidar 자료의 특성 및 지면점 분리)

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Shin, Jung-Il;Woo, Choong-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.533-542
    • /
    • 2006
  • Lidar point clouds provide three dimensional information of terrain surface and have a great advantage to generate precise digital elevation model (DEM), particularly over forested area where some laser signals are transmitted to vegetation canopy and reflected from the bare ground. This study initially investigates the characteristics of lidar-derived height information as related to vertical structure of forest stands. Then, we propose a new filtering method to separate ground points from Lidar point clouds, which is a prerequisite process both to generate DEM surface and to extract biophysical information of forest stands. Laser points clouds over the forest stands in central Korea show that the vertical distribution of laser points greatly varies by the stand characteristics. Based on the characteristics, the proposed filtering method processes first and last returns simultaneously without setting any threshold value. The ground points separated by the proposed method are used to generate digital elevation model, furthermore, the result provides the possibilities to extract other biophysical characteristics of forest.

Simulation Based Performance Assessment of a LIDAR Data Segmentation Algorithm (라이다데이터 분할 알고리즘의 시뮬레이션 기반 성능평가)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.119-129
    • /
    • 2010
  • Many algorithms for processing LIDAR data have been developed for diverse applications not limited to patch segmentation, bare-earth filtering and building extraction. However, since we cannot exactly know the true locations of individual LIDAR points, it is difficult to assess the performance of a LIDAR data processing algorithm. In this paper, we thus attempted the performance assessment of the segmentation algorithm developed by Lee (2006) using the LIDAR data generated through simulation based on sensor modelling. Consequently, based on simulation, we can perform the performance assessment of a LIDAR processing algorithm more objectively and quantitatively with an automatic procedure.

DTM Extraction from LIDAR Data by Filtering Method (필터링 기법을 이용한 LIDAR 자료로부터 DTM 추출)

  • Chung, Dong-Ki;Goo, Sin-Hoi;Eo, Jae-Hoon;Yoo, Hwan-Hee
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.355-361
    • /
    • 2005
  • 3차원 자료의 필요에 발맞추어 3차원 좌표를 직접적으로 획득할 수 있는 LIDAR 시스템이 등장하게 되었다 항공 LIDAR 시스템은 항공기, GPS, INS, Laser Scanner가 통합된 시스템으로 항공기에서 발사된 Laser의 반사파를 이용하여 거리와 그 때의 항공기의 자세, 위치를 통합하여 직접적인 3차원 포인트 자료를 획득할 수 있다. LiDAR 데이터는 지형, 건물, 식생 등의 지면위에 있는 모든 객체에 대한 3차원 자료와 영상자료를 함께 제공하고 있다. 이러한 LIDAR 자료로부터 DEM, DTM 등의 지형 정보와 식목, 건물 등 지물정보를 추출하는 연구가 활발하게 이루어지고 있다. 본 연구에서는 지형을 추출하는데 사용할 수 있는 몇 가지 필터링기법을 선정하여 국내의 다양한 지모, 지물에 적용하고 그 정확도를 평가해 보았다.

  • PDF