• Title/Summary/Keyword: license plate detection

검색결과 108건 처리시간 0.021초

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • 한국통신학회논문지
    • /
    • 제38C권12호
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

Day and night license plate detection using tail-light color and image features of license plate in driving road images

  • Kim, Lok-Young;Choi, Yeong-Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권7호
    • /
    • pp.25-32
    • /
    • 2015
  • In this paper, we propose a license plate detection method of running cars in various road images. The proposed method first classifies the road image into day and night images to improve detection accuracy, and then the tail-light regions are detected by finding red color areas in RGB color space. The candidate regions of the license plate areas are detected by using symmetrical property, size, width and variance of the tail-light regions, and to find the license plate areas of the various sizes the morphological operations with adaptive size structuring elements are applied. Finally, the plate area is verified and confirmed with the geometrical and image features of the license plate areas. The proposed method was tested with the various road images and the detection rates (precisions) of 84.2% of day images and 87.4% of night images were achieved.

YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식 (Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2)

  • 당순정;김응태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.713-725
    • /
    • 2019
  • 번호판 자동인식(ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이터세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47.74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.

An Enhanced Two-Stage Vehicle License Plate Detection Scheme Using Object Segmentation for Declined License Plate Detections

  • Lee, Sang-Won;Choi, Bumsuk;Kim, Yoo-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권9호
    • /
    • pp.49-55
    • /
    • 2021
  • 본 논문에서는 실제 도로에서 기울어진 촬영 각도로 인하여 회전된 차량 번호판을 정확하게 탐지하기 위하여 객체 세그먼테이션(object segmentation)을 이용하는 개선된 2-단계 차량 번호판 탐지 모델을 제안한다. 기존 연구에서 제안한 3-단계 차량 번호판 탐지 파이프라인 모델은 차량 번호판이 많이 기울어져 있을수록 탐지 정확도가 낮아지는 문제가 있다. 이를 해결하기 위해서 기존의 3-단계 모델에서 사각형 형태만으로 차량 후보 영역과 차량 번호판 후보 영역을 인식하는 전위 2개의 처리 단계 대신에 임의의 형태로 객체 탐지가 가능한 객체 세그먼테이션을 이용하는 하나의 단계로 대체함으로써 탐지 과정을 단순화하였으며 궁극적으로는 임의의 형태로 기울어진 차량 이미지에 대해서도 탐지 성능을 개선하였다. 기울어진 차량 번호판 이미지를 대상으로 실시한 차량 번호판 탐지 모델의 정확도 분석 실험 결과에 의하면 기존의 3-단계 차량 번호판 탐지 모델보다 제안된 2-단계 기법이 탐지 과정을 단순화하였음에도 최대 약 20%의 탐지 정확도를 개선할 수 있는 것으로 분석되었다.

Real-Time License Plate Detection in High-Resolution Videos Using Fastest Available Cascade Classifier and Core Patterns

  • Han, Byung-Gil;Lee, Jong Taek;Lim, Kil-Taek;Chung, Yunsu
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.251-261
    • /
    • 2015
  • We present a novel method for real-time automatic license plate detection in high-resolution videos. Although there have been extensive studies of license plate detection since the 1970s, the suggested approaches resulting from such studies have difficulties in processing high-resolution imagery in real-time. Herein, we propose a novel cascade structure, the fastest classifier available, by rejecting false positives most efficiently. Furthermore, we train the classifier using the core patterns of various types of license plates, improving both the computation load and the accuracy of license plate detection. To show its superiority, our approach is compared with other state-of-the-art approaches. In addition, we collected 20,000 images including license plates from real traffic scenes for comprehensive experiments. The results show that our proposed approach significantly reduces the computational load in comparison to the other state-of-the-art approaches, with comparable performance accuracy.

딥 컨볼루션 신경망을 이용한 자동차 번호판 영역 검출 시스템 (A Car Plate Area Detection System Using Deep Convolution Neural Network)

  • 정윤주;이스라필 안사리;심재창;이정환
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1166-1174
    • /
    • 2017
  • In general, the detection of the vehicle license plate is a previous step of license plate recognition and has been actively studied for several decades. In this paper, we propose an algorithm to detect a license plate area of a moving vehicle from a video captured by a fixed camera installed on the road using the Convolution Neural Network (CNN) technology. First, license plate images and non-license plate images are applied to a previously learned CNN model (AlexNet) to extract and classify features. Then, after detecting the moving vehicle in the video, CNN detects the license plate area by comparing the features of the license plate region with the features of the license plate area. Experimental result shows relatively good performance in various environments such as incomplete lighting, noise due to rain, and low resolution. In addition, to protect personal information this proposed system can also be used independently to detect the license plate area and hide that area to secure the public's personal information.

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법 (Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN)

  • 민동욱;임현석;곽정환
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.134-143
    • /
    • 2020
  • 자동차 번호판 인식 기술은 도로의 교통상황 통제, 과속차량 단속, 도주 차량의 추적 등 현대 교통 시설 및 교통 안전망을 책임지고 있는 핵심 기술 중 하나이다. 이 기법은 과거에도 연구되었던 분야였으나 최근 딥러닝 기술의 발전으로 다양한 기법들을 적용하여 향상된 성능을 보이는 분야이며, 크게 자동차 번호판 검출과 번호판 인식으로 나뉜다. 본 연구에서는 다양한 객체 검출 모델과 WPOD-Net(Warped Planar Object Detection Network) 모델을 활용하여 자동차 번호판 검출 성능을 향상시키기 위한 실험을 진행하였으며, 객체 검출 모델을 활용하여 번호판을 검출하는 기존 방식들 대신 차량을 검출한 다음 번호판을 검출하는 방식을 택하여 정확도를 높였다. 특히 Super-Resolution 기법 중 하나인 Fast-SRGAN 모델을 활용하여 이미지 내에 존재하는 노이즈를 제거하는 처리를 통해 최종 성능을 향상시켰다. 결과적으로 92.38%에서 96.72%로 선행 연구 대비 평균 4.34% 향상된 성능이 실험을 통해 확인되었다.

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

어두운 환경에 강인한 번호판 추출을 위한 레이블링 Hough Transform과 GLCM 기반의 탐색 기법 (The Method Based on Labeled Hough Transform and GLCM for License Plate Detection)

  • 박태준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.333-334
    • /
    • 2009
  • In this paper, I propose the novel method based on Labeled Hough transform and GLCM(Grey-Level Co-occurrence Matrix) for license plate detection. A lot of conventional methods have been proposed to detect the license plate, but those are useless in order to detect the license plate well in case of dark or unstable images. Histogram equalization is preprocessed to each image before applying this method. As a result, the license plate is detected accurately