• 제목/요약/키워드: li-ion battery

검색결과 680건 처리시간 0.031초

초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성 (Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery)

  • 지성화;조완택;김현효;김효진
    • 한국재료학회지
    • /
    • 제28권6호
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

전극구조설계 기반 고에너지밀도·고속충전 리튬이온배터리 제작 (Design of Structured Electrode for High Energy Densified and Fast Chargeable Lithium Ion Batteries)

  • 박수진;배창준
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.406-415
    • /
    • 2018
  • Lithium ion batteries have been widely adopted as energy storage and the LIB global market has grown fastest. However, LIB players have struggled against maximizing energy density since commercial monolithic electrodes are limited by electrolyte depletion caused by long and tortuous Li-ion diffusion pathways. Recently, new strategies designing the structure of battery electrodes strive for creating fast Li-ion path and alleviating electrolyte depletion problem in monolithic electrodes. In this paper, given the fundamental and experimental approaches, we compare the monolithic to structured electrodes and demonstrate the ways to fabricate high energy, fast chargeable Lithium ion battery.

고전압 LiNi0.5Mn1.5O4 양극 고성능 바인더 개발 연구 (Development of Advanced Polymeric Binders for High Voltage LiNi0.5Mn1.5O4 cathodes in Lithium-ion batteries)

  • 윤대희;최성훈
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.43-48
    • /
    • 2023
  • Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as one of most promising cathode material, because of its low-cost and competitive energy density. However, 4.7V vs. Li/Li+ of high operating potential facilitates electrolyte degradation on cathode-electrolyte interface during charge-discharge process. In particular, commercial polyvinylidene fluoride (PVDF) is not sutaible for LNMO cathode binder because its weak van der waals force induces thick and non-uniform coverage on the cathode surface. In this review, we study high performance binders for LNMO cathode, which forms uniform coating layer to prevent direct contact between electrolyte and LNMO particle as well as modifying high quality cathode electrolyte interphase, improved cell performace.

LLC 공진형 컨버터 기반 리튬이온 배터리 충전기의 통합 전류-전압 보상기 설계방법 연구 (Design of an Integrated Current-Voltage Charging Compensator for the LLC Resonant Converter-Based Li-ion Battery Charger)

  • 최영준;최시영;김래영
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional battery charger requires two separate voltage and current compensators to achieve constant current and constant-current-charging profile. This compensator configuration leads to an inevitable transient response during the mode change between the constant current and the constant voltage operation. Futhermore, a tedious and complicated design process is required to consider a widely changing battery voltage and the nonlinear electrical properties of Li-ion battery. This study proposes a single integrated voltage-current compensator of the LLC resonant converter for Li-ion battery charger applications to overcome the aforementioned drawbacks. The proposed compensator is designed to provide a smooth and reliable performance during the entire charging process while providing the reduced design efforts and seamless mode transient response. Several experimental results based on a 300 W prototype converter and its theoretical analysis are provided to verify the effectiveness of the proposed compensator.

액상반응에 의해 합성한 $LiCoO_2$ 를 정극활물질로 이용한 Li ion 2차전지의 특성 (Synthesis of $LiCoO_2$ by solution route and its behaviour as a cathode material in lithium ion secondary battery)

  • 김상필;조정수;박정후;심윤보;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.143-146
    • /
    • 1998
  • The $LiCoO_2$ powder was synthesized at >$700^{\circ}C$, >$850^{\circ}C$ by solution route. In this paper, we investigated X-ray diffraction, and charge-discharge performance for $LiCoO_2$/Li and $LiCoO_2$/MPCF cell. The $LiCoO_2$/Li ceSl exhibited a high avmge discharge potential of 38-3% and a good cycle life performance at 5(hnA/g during chargedischarge cycling between 43-3.0V. And, the $LiCoO_2$MPCF cell showed a high average discharge voltage of 3.6-3.W and a excellent cycle life prfomam during chargedischarge cycling b&wm 4 2-2.W. As a result, the $LiCoO_2$ powdm syd-eizd by solution route is a good cathode material for lithium ion secondary battery.

  • PDF

전기추진선박의 전력품질 개선을 위한 리튬-이온 배터리 에너지저장시스템 적용 (Lithium-ion Battery Energy Storage System for Power Quality Improvement in Electrical Propulsion Ships)

  • 구현근;서혜림;김장목
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.351-355
    • /
    • 2015
  • This paper explained the application of a lithium-ion battery energy storage system to electric propulsion ships. The power distribution in electric propulsion ships has low power quality because of the variation in the power consumption of the propulsion motor. For proper operation of the ship, the power quality needs to be improved, and the battery energy storage system is used to solve power-quality problems. The simulation models of electric propulsion ship and battery energy storage systems are constructed on MATLAB/Simulink to verify the improvement in power quality. The proposed system is applied in various scenarios of the propulsion motor state. The power quality achieved by using the battery energy storage system in both voltage and frequency satisfies the standards set by IEC-60092/101.

단상계 침지냉각 기술이 적용된 Li-ion계 배터리 발열특성에 관한 연구 (A Study on Heating Characteristics of Li-ion Battery Applicated Single-phase Immersion Cooling Technology)

  • 김운학;강석원;신기석
    • 한국재난정보학회 논문집
    • /
    • 제18권1호
    • /
    • pp.163-172
    • /
    • 2022
  • 연구목적: Li-ion 배터리의 효율적인 열관리 기술을 확보하기 위하여 Single&-phase 침지 냉각 기술을 적용한 시스템의 실험을 통하여 적용가능성을 확인하고자 하였다. 연구방법: LG-Chem에서 생산된 JH3 파우치 셀을 사용하여 14S2P 모듈을 제조하여 미국 카길사에서 생산된 식물성계 냉각유체에 침지한 후 0.3C~1C 속도로 충방전을 시행하여 열분포를 확인하였다. 연구결과: 침지냉각 기술로 배터리 모듈을 40℃ 이하의 온도로 관리할 수 있으며, 침지액의 분자구조 변화가 없다는 결과를 도출하였다. 결론: 침지냉각 방식이 Li-ion 배터리 열관리에 적용 가능함을 확인하였다.

알루미늄 박판 미세 V-notching 가공부위의 성형 Parameter 관한 연구 (Study on Design Parameter of Aluminum Micro V-notched Component with Thin Sheet Metal)

  • 김상목;박중원;이현민;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2008
  • Micro V-notching process has been used to manufacturing the safety component in Li-Ion battery. These kinds of safety component in Li-Ion battery plays an important role in the explosion from excessive overheating. Therefore, it is very crucial to estimate accurately the working pressure range of the safety component with micro V-notch. In this study, the relationship with the working internal pressure in Li-Ion battery and fracture phenomenon in micro V-notch was investigated through the numerical analysis. The numerical analysis is especially adopted the finite element method with ductile fracture criteria.

  • PDF

Non-isolated Boost Charger for the Li-Ion Batteries Suitable for Fuel Cell Powered Laptop Computers

  • Sang, Nguyen Van;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.31-39
    • /
    • 2013
  • The conventional non-isolated boost converter has some drawbacks such as poor dynamic performance and a discontinuous output current, which make it unsuitable for battery charging applications. In spite of its compactness and lightness, it is not preferred as a charger of portable electronic devices. In this paper, a non-isolated boost converter topology for Li-ion batteries suitable for fuel cell powered laptop computers is proposed and analyzed. The proposed converter has an additional inductor at the output to make a continuous output current. This feature makes it suitable for charger applications by eliminating the disadvantages of the conventional non-isolated boost converter mentioned above. A prototype of the proposed converter is built for the Li-ion battery charger of a laptop computer to prove the validity and advantages of the proposed topology.

Hybrid Sinusoidal-Pulse Charging Method for the Li-Ion Batteries in Electric Vehicle Applications Based on AC Impedance Analysis

  • Hu, Sideng;Liang, Zipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.268-276
    • /
    • 2016
  • A hybrid sinusoidal-pulse current (HSPC) charging method for the Li-ion batteries in electric vehicle applications is proposed in this paper. The HSPC charging method is based on the Li-ion battery ac-impedance spectrum analysis, while taking into account the high power requirement and system integration. The proposed HSPC method overcomes the power limitation in the sinusoidal ripple current (SRC) charging method. The charger shares the power devices in the motor inverter for hardware cost saving. Phase shifting in multiple pulse currents is employed to generate a high frequency multilevel charging current. Simulation and experimental results show that the proposed HSPC method improves the charger efficiency related to the hardware and the battery energy transfer efficiency.