• Title/Summary/Keyword: li-ion battery

Search Result 683, Processing Time 0.031 seconds

Studies on decomposition of solvent for lithium-ion battery (리튬 이온 전지의 용매 분해 반응에 대한 연구)

  • Chung Kwang-il;Choi Byeong-doo;Kim Shin-Kook;Kim Woo-Seong;Choi Yong-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • The electrochemical behavior of film and charge-discharge capacity of Li-ion cell in 1 M $LiPF_6/EC:DME$ (1 : 1, by volume ratio) electrolyte solution was studied using chronopotentiometry, cyclic voltammetry, chronoamperometry, and impedance spectroscopy. The first irreversible capacity was higher than the second irrversible capacity because of solvent decomposition. Especially, passivation film that is electron insulating and ionic conducting were formed on the MPCF by solvent decomposition during the first charge. The solvated Li is co-intercalated with solvent into MPCF electrode. Part of the MPCF is expoliated during co-intercalation of solvent-Li. The MPCF ends up nonuniformly covered by a relatively thick layer of exfoliated particles embedded in a matrix of product by solvent decomposition.

A High Efficiency LLC Resonant Converter with Wide Operation Range using Adaptive Turn Ratio Transformer for a Li-ion Battery (변압기의 가변 턴비 기법을 통해 넓은 전압범위를 만족하는 리튬이온 배터리용 고효율 LLC 공진형 컨버터)

  • Han, Hyeong-Gu;Choi, Yeong-Jun;Kim, Rae-Young;Kim, Juyong;Cho, Jintae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.305-311
    • /
    • 2017
  • In this paper, the LLC resonant converter battery charger, using adaptive turn ratio scheme, is proposed to achieve high efficiency and wide range output voltage. The LLC converter high frequency transformer has an adaptively changed turn ratio by the auxiliary control circuitry. As a result, the optimal converter design with a large magnetizing inductance is easily achieved to minimize the conduction and the turn-off losses while providing widely regulated voltage gain capability to properly charge the Li-ion battery. The proposed converter operational principle and the optimal design considerations are illustrated in detail. Finally, several simulation results verify the proposed LLC resonant converter's effectiveness.

The Effect of Polymer Blending and Extension Conditions on the Properties of Separator Prepared by Wet Process for Li-ion Secondary Battery (고분자 블렌딩 및 연신조건이 리튬 이온전지용 습식 Separator의 물성에 미치는 영향)

  • 문성인;손영수;김순식;김진열
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • The separator made from the blends of high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) was prepared by wet processing to use as Li-ion secondary battery. We investigated effects of the blending of the polymers and the film extension on the mechanical properties of the separator. The mechanical strength of separator increased with increasing molecular weights and contents of UHMWPE, for instance about $1000 kg/\textrm{cm}^2$ with the five times extended film of 6 wt% UHMWPE. The pores of the separator were very uniform with the size of 0.1~$0.12\mu\textrm{m}$. The shut-down characteristic quickly increased at around $130^{\circ}C$ and the fusion temperature was $160^{\circ}C$, so it could be applied to the lithium ion secondary battery.

Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery (리튬이온전지 음극활물질 Li4Ti5O12의 그래핀/CNT 첨가에 따른 전기화학적 특성)

  • Kim, Sang Baek;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.430-435
    • /
    • 2017
  • $Li_4Ti_5O_{12}$ (LTO) is an anode material for lithium ion battery, and the cycle performance is very good. The volume change of LTO during insertion and deinsertion of lithium ion is very small, so the cyclibility is very high. In this experiment graphene and CNT was added to increase the low conductivity of LTO which is the weak point of LTO. When graphene was located on the surface of LTO the conductivity did not increase so much because of the nano size LTO. Addition of CNT increased the conductivity because of the formation of the conducting network between LTO particle and the graphene. Carbon material addition was changed before and after the LTO manufacturing, and the capacity and the cyclibility was compared.

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

Characteristics of Salt Concentration in Electrolyte of Lithium Ion Battery According to Sudden Temperature Change (급격한 온도 변화에 따른 리튬 이온 배터리의 전해질 내 염 농도 분포 특성)

  • Jang, Kyung Min;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Lithium-ion batteries are widely used, from lightweight to energy-intensive, from small devices to large ESSs. However, it is sensitive to the surrounding environment and there is a change in performance depending on the temperature change. In this study, the temperature dependence of the charge / discharge characteristics of the battery is shown through simulation and the distribution of the salt concentration in the electrolyte is observed when the sudden temperature change is applied.

  • PDF

Prediction of Anisotropy and Formability of Lithium-ion Battery Pouch Sheet using Non-quadratic Yield Function (비이차 비등방 항복함수를 이용한 리튬-이온 배터리 파우치의 이방성 및 성형성 예측)

  • J. S. Kim;C. M. Moon;H.R. Lee;M. G. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.136-144
    • /
    • 2023
  • This study analyzed the mechanical behavior of lithium-ion battery pouch material and predicted its formability. A homogenization method was used to evaluate the physical properties of the pouch, and a new hardening model was developed. The yield function for the plastic model was optimized, and the anisotropic property was determined. Also, the forming limits were measured and predicted using the M-K forming limit diagram. Finally, a square cup drawing experiment confirmed the accuracy of the measured mechanical properties and the formability calculation.

Synthesis of polycrystalline powder of $Li_xNi_{1-y}Co_yO_2$ via the PVA-precursor method : the effect of synthetic variation on the electrochemical property of the lithium ion battery (PVA-전구체법을 적용한 $Li_xNi_{1-y}Co_yO_2$ 다결정성 분말의 합성 : 합성조건에 따른 리튬이온전지의 전기화학적 특성 고찰)

  • Kim Sue Joo;Song Me Young;Kwon Hye Young;Park Seon Hui;Park Dong Gon;Kweon Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 1999
  • By the PVA-precursor method, polycrystalline powder of $Li_xNi_{1-y}Co_yO_2$, cathode material for lithium battery, was synthesized. Using the powder as the cathode material, lithium ion batteries were fabricated, whose electrochemical properties were measured. The effect of changing synthetic conditions, such as PvA/metal mole ratio, concentration of PVA, degree of polymerization of PVA, pyrolysis condition, and metal stoichiometry, on the battery performance was investigated. Considering the initial performance of the cell, the optimum stoichiometry of the $Li_xNi_{1-y}Co_yO_2$, synthesized by the PVA-precursor method was observed to be x: 1.0 and y=0.26. A minor phase of $Li_2CO_3$, which was generated by the residual carbon in the powder precursor, deteriorated the performance of the cell. In order to eliminate the minor phase, the precursor had to be pyrolyzed under the flow of dry air. Annealing the powder at $500^{\circ}C$ under the flow of dry air also eliminated the minor phase, and the performance of the cell was largely improved by the treatment.

Manufacturing and Electrochemical Characteristics of SnO2/Li4Ti5O12 for Lithium Ion Battery (리튬이차전지용 SnO2/Li4Ti5O12의 합성 및 전기화학적 특성)

  • Yang, A-Reum;Na, Byung-Ki
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.265-270
    • /
    • 2015
  • In order to increase the capacity of the lithium ion battery, the capacity of the anode should be increased. SnO2 and Li4Ti5O12 were studied to replace the graphite as the anode materials. In this study, SnO2/Li4Ti5O12 composite materials were synthesized by solid-state method. The study reported here attempts to enhance the electrochemical capacity of Li4Ti5O12 through the incorporation of SnO2. Sn-based Li ion storage materials are loaded on Li4Ti5O12 surface. The SnO2/Li4Ti5O12 composite material has higher capacity than Li4Ti5O12, but the cycling capacity was decreased due to SnO2.