• Title/Summary/Keyword: lexicon-based sentiment analysis

Search Result 35, Processing Time 0.025 seconds

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

Research on Constructing a Sentiment Lexicon for the F&B Sector based on the N-gram Framework

  • Yeryung Moon;Gaeun Son;Geonuk Nam;Hanjin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.11-19
    • /
    • 2024
  • Online and mobile reviews strongly influence consumer behavior, especially in the service industry, and play a key role in determining customer retention and revisit rates. Systematically analyzing the information in these reviews can effectively assess how they directly influence customers' purchase decisions. In this study, we applied the existing KNU sentiment dictionary to food and beverage (F&B) review data to build a customized sentiment lexicon using N-grams based on about 10,000 reviews. Comparing its performance with the existing dictionary, we found that the sentiment lexicon generated using the 1-gram, 2-gram, and 3-gram models had the highest accuracy, precision, recall, and F1 scores. These results can serve as a powerful business support tool for SMEs in the F&B and grocery shopping sector, also be used to predict customer demand for technology and policy.

A domain-specific sentiment lexicon construction method for stock index directionality (주가지수 방향성 예측을 위한 도메인 맞춤형 감성사전 구축방안)

  • Kim, Jae-Bong;Kim, Hyoung-Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.585-592
    • /
    • 2017
  • As development of personal devices have made everyday use of internet much easier than before, it is getting generalized to find information and share it through the social media. In particular, communities specialized in each field have become so powerful that they can significantly influence our society. Finally, businesses and governments pay attentions to reflecting their opinions in their strategies. The stock market fluctuates with various factors of society. In order to consider social trends, many studies have tried making use of bigdata analysis on stock market researches as well as traditional approaches using buzz amount. In the example at the top, the studies using text data such as newspaper articles are being published. In this paper, we analyzed the post of 'Paxnet', a securities specialists' site, to supplement the limitation of the news. Based on this, we help researchers analyze the sentiment of investors by generating a domain-specific sentiment lexicon for the stock market.

Multi-Topic Sentiment Analysis using LDA for Online Review (LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석 - TripAdvisor 사례를 중심으로 -)

  • Hong, Tae-Ho;Niu, Hanying;Ren, Gang;Park, Ji-Young
    • The Journal of Information Systems
    • /
    • v.27 no.1
    • /
    • pp.89-110
    • /
    • 2018
  • Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon (구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축)

  • Kang, Seung-Shik;Won, HyeJin;Lee, Minhaeng
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.144-151
    • /
    • 2020
  • In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

A Study on Efficient Market Hypothesis to Predict Exchange Rate Trends Using Sentiment Analysis of Twitter Data

  • Komariah, Kokoy Siti;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1107-1115
    • /
    • 2016
  • Efficient Market Hypothesis (EMH), states that at any point in time in a liquid market security prices fully reflect all available information. This paper presents a study of proving the hypothesis through daily Twitter sentiments using the hybrid approach of the lexicon-based approach and the naïve Bayes classifier. In this research we analyze the currency exchange rate movement of Indonesia Rupiah vs US dollar as a way of testing the Efficient Market Hypothesis. In order to find a correlation between the prediction sentiments from Twitter data and the actual currency exchange rate trends we collect Twitter data every day and compute the overall sentiment to label them as positive or negative. Experimental results have shown 69% correct prediction of sentiment analysis and 65.7% correlation with positive sentiments. This implies that EMH is semi-strong Efficient Market Hypothesis, and that public information provide by Twitter sentiment correlate with changes in the exchange market trends.

Anatomy of Sentiment Analysis of Tweets Using Machine Learning Approach

  • Misbah Iram;Saif Ur Rehman;Shafaq Shahid;Sayeda Ambreen Mehmood
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.97-106
    • /
    • 2023
  • Sentiment analysis using social network platforms such as Twitter has achieved tremendous results. Twitter is an online social networking site that contains a rich amount of data. The platform is known as an information channel corresponding to different sites and categories. Tweets are most often publicly accessible with very few limitations and security options available. Twitter also has powerful tools to enhance the utility of Twitter and a powerful search system to make publicly accessible the recently posted tweets by keyword. As popular social media, Twitter has the potential for interconnectivity of information, reviews, updates, and all of which is important to engage the targeted population. In this work, numerous methods that perform a classification of tweet sentiment in Twitter is discussed. There has been a lot of work in the field of sentiment analysis of Twitter data. This study provides a comprehensive analysis of the most standard and widely applicable techniques for opinion mining that are based on machine learning and lexicon-based along with their metrics. The proposed work is helpful to analyze the information in the tweets where opinions are highly unstructured, heterogeneous, and polarized positive, negative or neutral. In order to validate the performance of the proposed framework, an extensive series of experiments has been performed on the real world twitter dataset that alter to show the effectiveness of the proposed framework. This research effort also highlighted the recent challenges in the field of sentiment analysis along with the future scope of the proposed work.

Social Media and Communication in Times of Public Health Crisis: Analysis of COVID-19 YouTube Vlog activities in the sharing of patient experience and information

  • Fu Kang;Seunghye Sohn;Guiohk Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • This study analyzes the content of YouTube Vlog videos created by patients of Coronavirus disease 2019 ("COVID-19") in South Korea and viewer comments on those videos. As this new infectious disease started to sweep the world in late 2019 and early 2020, the public started facing fear and uncertainty stemming from the lack of sufficient and accurate information about the virus. At the same time, as COVID-19 patients in South Korea were treated in isolation to prevent the spread of the virus, the patients themselves were experiencing anxiety and exclusion from the society. During this period, there was an increase in YouTube Vlog videos created by the patients in which they shared their experiences going through the treatment and recovery processes. To understand how these YouTube Vlog videos were being used by the patients to connect with the society and seek support in a state of isolation and anxiety, this study conducted a qualitative multi-case analysis of three sample YouTube Vlog video channels to analyze their content, as well as a lexicon-based sentiment analysis of viewer comments to understand the experiences and reactions of viewers. The patients' YouTube Vlog videos showed that they shared similar stages of progress, despite each emphasizing a different main theme. Overall, the tone of the viewer comments became increasingly positive over time, although with some variance among different patient cases and stages. The results confirmed that Vlogs of patients played a significant role in reducing the uncertainty around COVID-19 and strengthening social support for the patients. The findings of this study can improve an understanding of the psychological and behavioral aspects of patient experience in isolated treatment and the impact of shared communication among members of society in times of crisis.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.