• 제목/요약/키워드: lexicon-based sentiment analysis

검색결과 35건 처리시간 0.024초

감정점수의 전파를 통한 한국어 감정사전 생성 (Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation)

  • 박호민;김창현;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 2020
  • 감정분석은 문서 또는 대화상에서 주어진 주제에 대한 태도와 의견을 이해하는 과정이다. 감정분석에는 다양한 접근법이 있다. 그 중 하나는 감정사전을 이용하는 사전 기반 접근법이다. 본 논문에서는 널리 알려진 영어 감정사전인 VADER를 활용하여 한국어 감정사전을 자동으로 생성하는 방법을 제안한다. 제안된 방법은 세 단계로 구성된다. 첫 번째 단계는 한영 병렬 말뭉치를 사용하여 한영 이중언어 사전을 제작한다. 제작된 이중언어 사전은 VADER 감정어와 한국어 형태소 쌍들의 집합이다. 두 번째 단계는 그 이중언어 사전을 사용하여 한영 단어 그래프를 생성한다. 세 번째 단계는 생성된 단어 그래프 상에서 레이블 전파 알고리즘을 실행하여 새로운 감정사전을 구축한다. 이와 같은 과정으로 생성된 한국어 감정사전을 유용성을 보이려고 몇 가지 실험을 수행하였다. 본 논문에서 생성된 감정사전을 이용한 감정 분류기가 기존의 기계학습 기반 감정분류기보다 좋은 성능을 보였다. 앞으로 본 논문에서 제안된 방법을 적용하여 여러 언어의 감정사전을 생성하려고 한다.

Text Mining and Sentiment Analysis for Predicting Box Office Success

  • Kim, Yoosin;Kang, Mingon;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.4090-4102
    • /
    • 2018
  • After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.

Romanian-Lexicon-Based Sentiment Analysis for Assesing Teachers' Activity

  • Barila, Adina;Danubianu, Mirela;Gradinaru, Bogdanel
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.43-50
    • /
    • 2022
  • The students' feedback is important to measure and improve teaching performance. Many teacher performance evaluation systems are based on responses to closed question, but the free text answers can contain useful information which had to be explored. In this paper we present a lexicon-based sentiment analysis to explore students' text feedback. The data was collected from a system for the evaluation of teachers by students developed and used in our university. The students comments are in Romanian language so we built a Romanian sentiment word lexicon. We used this to categorize the feeback text as positive, negative or neutral. In addition, we added a new polarity - indifferent - in order to categorize blank and "I don't answer" responses.

한국어 장소 리뷰를 이용한 공간 감성어 사전 구축 방법 (Method for Spatial Sentiment Lexicon Construction using Korean Place Reviews)

  • 이영민;권필;유기윤;김지영
    • 대한공간정보학회지
    • /
    • 제25권2호
    • /
    • pp.3-12
    • /
    • 2017
  • 위치 기반 서비스를 이용하여 자신이 방문한 장소에 대한 긍정 혹은 부정적 의견을 리뷰로 남기는 것이 일상화되고 있다. 실제 방문자가 작성한 장소 리뷰에 대한 감성분석 결과는 잠재적 소비자뿐 아니라 기업에게도 유용한 정보를 제공할 수 있다. 장소에 대한 감성분석을 실시하기 위해서는 감성분석의 기준이 되는 어휘에 대한 사전이 필요하다. 그러나 현재까지 장소를 표현하는 공간 감성어에 대한 사전이 구축된 바 없다. 이에 본 연구는 실제 방문자가 한국어로 작성한 장소 리뷰 데이터를 분석하여 공간 감성어 사전을 구축하는 방법을 제안하며, 여러 장소 카테고리 중 테마공원을 대상으로 공간 감성어 사전을 구축하였다. 이를 위해 자연어 처리 기법과 통계적 기법을 활용하였으며, 사전에 포함되는 공간 감성어는 감성의 극성에 대한 정보와 극성의 정도에 대한 확률점수를 포함하고 있다. 본 연구에서 구축한 공간 감성어 사전은 3개의 테이블(SSLex_SS, SSLex_single, SSLex_combi)로 구성되며, 총 219개의 어휘를 포함한다. 이를 바탕으로 트위터에서 테마공원에 대해 작성된 글을 대상으로 감성분석을 실시하였으며, 감성의 극성 분류에 대한 전체 정확도가 0.714로 산출됨에 따라 사전의 유효성을 확인할 수 있었다.

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.

집단지성을 이용한 한글 감성어 사전 구축 (Building a Korean Sentiment Lexicon Using Collective Intelligence)

  • 안정국;김희웅
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.49-67
    • /
    • 2015
  • 최근 다양한 분야에서 빅데이터의 활용과 분석에 대한 중요성이 대두됨에 따라, 뉴스기사와 댓글과 같은 비정형 데이터의 자연어 처리 기술에 기반한 감성 분석에 대한 관심이 높아지고 있다. 하지만, 한국어는 영어와는 달리 자연어 처리가 어려운 교착어로써 정보화나 정보시스템에의 활용이 미흡한 실정이다. 이에 본 연구는 감성 분석에 활용이 가능한 감성어 사전을 집단지성으로 구축하였고, 누구나 연구와 실무에 사용하도록 API서비스 플랫폼을 개방하였다(www.openhangul.com). 집단지성의 활용을 위해 국내 최대 대학생 소셜네트워크 사이트에서 대학생들을 대상으로 단어마다 긍정, 중립, 부정에 대한 투표를 진행하였다. 그리고 집단지성의 효율성을 높이기 위해 감성을 '정의'가 아닌 '분류'하는 방식인 폭소노미의 '사람들에 의한 분류법'이라는 개념을 적용하였다. 총 517,178(+)의 국어사전 단어 중 불용어 형태를 제외한 후 감성 표현이 가능한 명사, 형용사, 동사, 부사를 우선 순위로 하여, 현재까지 총 35,000(+)번의 단어에 대한 투표를 진행하였다. 본 연구의 감성어 사전은 집단지성의 참여자가 누적됨에 따라 신뢰도가 높아지도록 설계하여, 시간을 축으로 사람들이 단어에 대해 인지하는 감성의 변화도 섬세하게 반영하는 장점이 있다. 따라서 본 연구는 앞으로도 감성어 사전 구축을 위한 투표를 계속 진행할 예정이며, 현재 제공하고 있는 감성어 사전, 기본형 추출, 카테고리 추출 외에도 다양한 자연어 처리에 응용이 가능한 API들도 제공할 계획이다. 기존의 연구들이 감성 분석이나 감성어 사전의 구축과 활용에 대한 방안을 제안하는 것에만 한정되어 있는 것과는 달리, 본 연구는 집단지성을 실제로 활용하여 연구와 실무에 활용이 가능한 자원을 구축하여 개방하여 공유한다는 차별성을 가지고 있다. 더 나아가, 집단지성과 폭소노미의 특성을 결합하여 한글 감성어 사전을 구축한 새로운 시도가 향후 한글 자연어 처리의 발전에 있어 다양한 분야들의 융합적인 연구와 실무적인 참여를 이끌어 개방적 협업의 새로운 방향과 시사점을 제시 할 수 있을 것이라 기대한다.

Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축 (News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec)

  • 김다예;이영인
    • 한국빅데이터학회지
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2018
  • 주식 시장에 대한 예측은 오랜 기간 많은 이들의 꿈이었다. 하지만 수많은 노력에도 불구하고 주식 시장을 정확하게 예측하기란 쉬운 일이 아니었다. 본 연구는 주식 시장의 방향성에 주목하여 이 방향성을 예측할 수 있는 감성사전을 구축하는 새로운 방법을 제시한다. 이를 위해 2015년 1월 1일부터 2017년 12월 31일까지 3년간의 증시 뉴스 25,000여 건의 데이터를 수집하여, 문맥을 고려하기 위한 Word2Vec을 적용하였다. 이를 바탕으로 뉴스에 감성분석을 실시하여 KOSPI 종가 지수를 예측해 보았다.

국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법 (Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon)

  • 김서인;김동성;김종우
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.45-69
    • /
    • 2016
  • 최근에 빅 데이터를 활용하여 감성을 측정하는 시도가 활발히 이루어지고 있다. 통신 매체와 SNS의 발달로 기업은 국민의 감성을 파악하고 즉시 대응해야할 필요성이 생겼다. 우리나라의 경제는 대기업에 대한 의존도가 높기 때문에 10대 기업에 대한 감성분석은 의미가 있다고 할 수 있다. 이러한 측면에서 본 연구는 다 범주를 기준으로 구축한 감성사전을 활용하여 우리나라 10대 기업에 대한 감성을 분석하였다. 빅 데이터를 이용하여 감성을 분석한 기존의 선행연구는 감성을 차원으로 분류하는 경향이 있다. 차원적 감성으로 감성을 분류하는 것은 분류의 기준이 학술적으로 증명되었기에 감성 분석에 주로 사용되어 왔지만 전문가 정도의 지식이 있어야 분류할 수 있어 보편적인 감성을 대변하는 데 비효과적이기에 보완이 필요하다고 할 수 있다. 개별 범주적 감성은 이 점을 보완할 수 있는 분류 방식으로 일정 수준의 주관성이 개입되지만 보편적으로 느낄 수 있는 감성을 측정하는데 효과적이다. 따라서 본 연구는 보편적인 감성의 측정을 위해 감성을 차원으로 분류하지 않고 개별 범주로 분류하여 9가지 영역으로 나누었다. 선행 연구에서 추출한 9가지 범주에 해당하는 감성 단어에 기초하여 감성사전을 구축하였으며 감성 단어가 검출된 빈도를 기준으로 감성을 분석했다. 대상 데이터는 2014년 1월부터 2016년 1월까지 우리나라 10대 기업에 대하여 축적된 뉴스 데이터이다. 대상 데이터에서 검출된 감성 단어의 빈도를 기준으로 각 기업에 대한 감성 순위를 나누고 분포를 확인하였다. 기업에 따라서 감성이 다를 수 있는지, 특정 사건이 각 기업에 대한 감성에 영향을 줄 수 있는지 가설을 세우고 검정하였다. 결론적으로, 다 범주 감성 사전을 활용한 감성 분석은 기업 간 비교와 시점 간 비교에 유의한 것으로 나타났다. 본 연구는 빅 데이터에 산재해있는 감성을 국민의 시각으로 측정하는 하나의 대안으로서 의의가 있다.

한국어 극성 사전 구축을 위한 크라우드소싱 기반 감성 단어 극성 태깅 게임 (A Crowdsourcing-based Emotional Words Tagging Game for Building a Polarity Lexicon in Korean)

  • 김준기;강신진;배병철
    • 한국게임학회 논문지
    • /
    • 제17권2호
    • /
    • pp.135-144
    • /
    • 2017
  • 감성 분석은 글을 통해 작성자의 주관적인 생각이나 느낌을 분석하는 방법으로 효과적인 감성 분석을 위해서는 감성 단어 극성 사전 구축이 필수적이다. 본 논문은 효율적인 한국어 극성 사전 구축을 위해 우리가 개발한 크라우드소싱 기반 게임을 소개한다. 먼저, 크롤러를 이용해 인터넷 커뮤니티에서 말뭉치들을 수집했고, Twitter 형태소를 이용해 수집한 말뭉치를 형태소별로 분류하고 단어화했다. 이 단어들은 모바일 플랫폼 기반 태깅 게임 형태로 제공되어 게임플레이를 통해 플레이어들이 자발적으로 단어들의 극성을 선택하고 결과가 데이터 베이스에 축적되도록 게임이 설계되었다. 현재까지 약 1200여개의 단어들의 극성을 태깅하였으며, 향후 좀 더 많은 감성 단어 데이터들을 축적함으로써 특히 게임 도메인에서 한국어 감성 분석 연구에 기여할 것으로 기대한다.

잠재 토픽 기반의 제품 평판 마이닝 (Latent topics-based product reputation mining)

  • 박상민;온병원
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.39-70
    • /
    • 2017
  • 최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.