• Title/Summary/Keyword: leupeptin

Search Result 29, Processing Time 0.023 seconds

Proteases and Protease Inhibitors Produced in Streptomycetes and Their Roles in Morphological Differentiation

  • KIM DAE WI;KANG SUNG GYUN;KIM IN SEOP;LEE BYONG KYU;RHO YONG TAIK;LEE KYE JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • Streptomycetes are Gram-positive microorganisms producing secondary metabolites through unique physiological differentiation [4]. The microbes show unusual morphological differentiation to form substrate mycelia, aerial mycelia, and arthrospores on solid medium [19]. Substrate mycelium growth is sustaining with sufficient nutrients in the culture medium. The concentration of a specific individual substrate in the culture environment is the most important extracellular factor allowing vegetative mycelia growth, where extracellular hydrolytic enzymes participate in the utilization of waterinsoluble substrates. However, with starvation of nutrients in the culture medium, the vegetative mycelia differentiate to aerial mycelia and spores. It has been considered that shiftdown of essential nutrients for mycelia growth is the most important factor triggering morphological and physiological differentiation in Streptomyces spp. Since proteineous macromolecule compounds are the major cellular components, these are faced to endogenously metabolize following a severe depletion of nitrogen source in culture nutrients (Fig. 1). Various proteases were identified of which production was specifically related with the phase of mycelium growth and also morphological differentiation. The involvement of proteases and protease inhibitor is reviewed as a factor explaining the mycelium differentiation in Streptomyces spp.

Purification and Characterization of Protease from the Hepatopancreas of Shrimp, Penaeus orientalis

  • Oh Eun-Sil;Kim Doo-Sang;Choi Sung-Mi;Kim Jeong-Han;Pyeun Jae-Hyeung;Cho Deuk-Moon;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • A protease without tryptic and chymotryptic activities was purified from the hepatopancreas of shrimp, Penaeus orientalis, using Q-Sepharose ionic exchange, benzamidine Sepharose-6B affinity, Mono-Q, and gel chromatography. Molecular weight (M.W.) of the protease was estimated to be 27kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS­PAGE). The amino acid composition of the protease was different from that of protease from P. japonicus or trypsin from P. orientalis. The protease was completely inhibited by benzamidine, $N\alpha-p-tosyl-L-lysine$ chloromethyl ketone (TLCK), and phenylmethylsulfonyl fluoride (PMSF) and was not affected by leupeptin, pepstatin, N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), iodoacetate, and ethylenediamine tetra acetate (EDTA). The enzyme did not have any activity against Na-benzoyl-DL-arginine p-nitroanilide (BAPNA) or N-benzoyl-L-tyrosine ethyl ester (BTEE) which are specific substrates of trypsin and chymotrypsin, respectively. However, the protease showed hydrolytic activity for a carboxyl terminal of Tyr, Trp, Phe, Glu, and Cys.

  • PDF

Effect of Protease Inhibitors on Degradation of Recombinant Human Epidermal Growth Factor in Skin Tissue

  • Ryou, Hae-Won;Lee, Jang-Won;Kyung, Kyung-Ae;Park, Eun-Seok;Chi, Sang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.34-38
    • /
    • 1997
  • Recombinant human epidermal growth factor (rhEGF), a polypeptide of 53 amino acid residues, is subject to degradation by numerous enzymes, especially proteases, when it is applied on the skin for the treatment of open wound. Amastatin, aprotinin, bestatin, EDTA, EGTA, gabexate, gentamicin, leupeptin, and TPCK were investigated for the possible protease inhibitors, which may use to protect rhEGF from degradation by the enzymes in the skin. Skin homogenates containing protease inhibitors and rhEGF were incubated at $37^{\circ}C$ for 30 minutes. After the reaction was stopped with trifluoroacetic acid, the amount of rhEGF remaining in the sample was determined with an HPLC method. The percentages of rhEGF degraded, at the skin/PBS ratio of 0.25, in the mouse, rat, and human skin homogenate were 85%, 70%, and 46%, respectively. The degree of degradation of rhEGF in the cytosolic fraction was higher than that in the membrane fraction and these enzyme reactions were completed in 30 minutes. Bestatin, EGTA, and TPCK showed significant inhibitory effects on the degradation of rhEGF in the two fractions (p<0.05), while the other protease inhibitors had no significant inhibitory effects or, even resulted in deleterious effects. Therefore, the formulation containing one or several inhibitors among these effective inhibitors would be a promising topical preparation of rhEGF for the treatment of open wound.

  • PDF

An Additional Mechanism for the Cytotoxicity of 2-Chloroethylethyl Sulfide in Spleen Lymphocytes; Lysosomal Labilization

  • Choi, Dae-Sung;Shin, Sung-Ho;Kim, Yun-Bae;Cha, Seung-Hee;Sok, Dai-Eun
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.79-82
    • /
    • 1995
  • Exposure of spleen lymphocytes to 2-chloroethylethyl sulfide (CEES) leads to a reduction of the intracellular ATP level, followed by a decrease in cell viability. Addition of nicotinamide, an inhibitor of poly(ADP-ribose) polymerase (PADPRP), restores both ATP level and viability, indicating that an activation of PADPRP is responsible for the cytotoxicity of CEES. The involvement of a $Ca^{2+}$-mediated process in cytotoxicity is suggested. Verapamil, EGTA, trifluoperazine, and butacaine exhibit a partial protection (20 to 58%) against the cytotoxicity of CEES. Investigation of the causative role of proteolytic degradation in cell death indicate that pepstatin and leupeptin exert a substantial protective effect (60 to 70%), suggesting the involvement of lysosomal destabilization in CEES-induced cytotoxicity. Also, lysosomotropic agents markedly decrease the cytotoxicity. Lysosomal labilization may be a mechanism for the cytotoxicity of CEES.

  • PDF

Purification and Characterization of Trypsins Affecting on the Autolysis of Shrimp, Penaeus japonicus

  • KIM Hyeung-Rak;KIM Doo-Sang;AHN Chang-Bum;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.797-804
    • /
    • 1996
  • Two trypsins were purified from shrimp hepatopancreas through ammonium sulfate fractionation, Q-Sepharose ionic exchange, benzamidine Sepharose-6B affinity, and Sephacryl S-300 gel chromatography. Both enzymes had a single polypeptide chain with a molecular weight (M.W.) of 32 kDa by sodium dodecylsulfate polyacrylamide gel electrophoresis (SOS-PAGE), although trypsin A and B were estimated to be a molecular weight of 27.2 and 22.8 kDa, respectively, using Sephacryl S-300 gel filtration. Both trypsins had similar amino acid compositions and rich in glycine, valine, alanine, aspartic acid, and glutamic acid, but low in methionine and basic amino acids. Both enzymes were completely inactivated by soybean trypsin inhibitor (SBTI), phenylmethylsulfonyl fluoride (PMSF), tosyl-L-lysine chloromethyl ketone (TLCK), benzamidine, leupeptin, however, not affected by tosyl-L-phenylalanine chloromethyl ketone (TPCK) and pepstatin.

  • PDF

Comparative Biochemical Properties of Proteinases from the Hepatopancreas of Shrimp. -II. Purification of Trypsin from the Hepatopancreas of Penaeus orientalis-

  • Oh Eun-Sil;Kim Doo-Sang;Jung Kyoo-Jin;Pyeun Jae-Hyeung;Heu Min-Soo;Kim Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.209-215
    • /
    • 1998
  • Trypsin-like enzyme was purified from shrimp hepatopancreas through Q-Sepharose ionic exchange, benzamidine Sepharose-6B affinity, and Superdex 75 gel chromatography. Purity of trypsin-like enzyme was increased 69-fold with $44\%$ yield. The enzyme consisted of a single polypeptide chain with a molecular weight (M.W.) of 32 kDa judged by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was completely inactivated by serine enzyme inhibitors such as soybean trypsin inhibitor (SBTI), tosyl-L­lysine chloromethyl ketone (TLCK), and leupeptin. However, the enzyme was not affected by tosyl-L-phenylalanine chloromethyl ketone (TPCK) which is a chymotrypsin specific inhibitor. The enzyme had no activity against benzoyl-tyrosine ethyl ester (BTEE) which is a chymotrypsin specific substrate. The enzyme showed high activity on the carboxyl terminal of Phe, Tyr. Glu, Arg, and Asp. However. no activity was detected against the carboxyl terminal of Pro, Trp, Cys, Gly, Val, and Ala.

  • PDF

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui;Chen, Juan;Wang, Fangbin;Wang, Lu;Liu, Jian;Lin, Yan
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.649-659
    • /
    • 2022
  • A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

Isolation and characterization of a 40 kDa cysteine protease from Grymnopholloides seoi adult worms (참굴큰입흡충 (Gymnophalloides seoi) 성충에서 정제한 40 kDa 시스테인계열 단백분해효소의 특성)

  • 최민호;박원진
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • A 40 kDa cysteine protease was purified from the crude extract of adult worms of GMnnophalloines seoi by two consecutive steps: Sephacryl S-200 HR and DEAE- Sephacel chromatography. Enzyme activities were completely inhibited by cysteine protease inhibitors, L-lorans-epoxysuccinylleucylamido (4-guanidino) butane (E-64) and iodoacetic acid, strongly suggesting that the purified enzyme belongs to the cysteine family of proteases. The enzyme was maximally acive at pH 4.5 in 0.1 M of buffer, and its activity was greatly potentiated in the presence of 5 mM dithiothreitol. The protease degraded macromolecules with differential capabilities : it degraded extracellular matrix proteins, such as collagen and fibronectin, with a stronger activity against collagen than fibronectin . However, the enzyme digested hemoglobin and human immunoglobulins only slightly. leaving them nearly intact after an overnight reaction. Our results suggest that the cysteine protease of G. seoi adults is potentially significant in the nutrient uptake from the host intestine.

  • PDF

A Novel Metalloprotease from the Wild Basidiomycete Mushroom Lepista nuda

  • Wu, Y.Y.;Wang, H.X.;Ng, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2011
  • A 20.9-kDa metalloprotease was isolated from dried fruiting bodies of the wild basidiomycete mushroom Lepista nuda. The N-terminal amino acid sequence of the protease was seen to be ATFVLTAATNTLFTA, thus displaying no similarity with the sequences of previously reported metalloproteases. The protease was purified using a procedure that entailed ion-exchange chromatography on CM-Cellulose, Q-Sepharose, and Mono S, and FPLC-gel filtration on Superdex 75. The protease functioned at an optimum pH of 7.0 and an optimum temperature of $50^{\circ}C$. It was also noted that the protease demonstrated a proteolytic activity of 1,756 U/mg toward casein. The $K_m$ of the purified protease toward casein was 6.36 mg/ml at a pH of 7.0 and with a temperature of $37^{\circ}C$, whereas the $V_{max}$ was 9.11 ${\mu}g\;ml^{-1}\;min^{-1}$. The activity of the protease was adversely affected by EDTA-2Na, suggesting that it is a metalloprotease. PMSF, EGTA, aprotinin, and leupeptin exerted no striking inhibitory effect. The activity of the protease was enhanced by $Fe^{2+}$, but was curtailed by $Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ ions. The protease also exhibited inhibitory activity against HIV-1 reverse transcriptase with an $IC_{50}$ value of 4.00 ${\mu}M$. The $IC_{50}$ values toward hepatoma Hep G2 and leukemia L1210 cells in vitro were 4.99 ${\mu}M$ and 3.67 ${\mu}M$, respectively.

Purification and Characterization of Six Fibrinolytic Serine-Proteases from Earthworm Lumbricus rubellus

  • Cho, Il-Hwan;Choi, Eui-Sung;Lim, Hun-Gil;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • The six lumbrokinase fractions (F1 to F6) with fibrinolytic activities were purified from earthworm Lumbricus rubellus lysates using the procedures of autolysis, ammonium sulfate fractionation, and column chromatography. The proteolytic activities on the casein substrate of the six iso-enzymes ranged from 11.3 to 167.5 unit/mg with the rank activity orders of F2 > F1 > F5 > F6 > F3 > F4. The fibrinolytic activities of the six fractions on the fibrin plates ranged from 20.8 to 207.2 unit/mg with rank orders of F6 > F2 > F5 > F3 > F1 > F4. The molecular weights of each iso-enzyme, as estimated by SDS-PAGE, were 24.6 (F1), 26.8 (F2), 28.2 (F3), 25.4 (F4), 33.1 (F5), and 33.0 kDa (F6), respectively. The plasminogen was activated into plasmin by the enzymes. The optimal temperature of the six iso-enzymes was $50^{\circ}C$, and the optimal pH ranged from pH 4-12. The four iso-enzymes (F1-F4) were completely inhibited by PMSF. The two enzymes (F5 and F6) were completely inhibited by aprotinin, TLCK, TPCK, SBTI, LBTI, and leupeptin. The N-terminal amino acid (aa) sequences of the first 20 to 22 residues of each fraction had high homology. All six isoenzymes had identical aa residues 2-3 and 13-15. The N-terminal 21-22 aa sequences of the F2, F3, and F4 isoenzymes were almost the same. The N-terminal aa sequences of F5 and F6 were identical.